Experimental Analysis of Oscillatory Vortex Generators in Wind Turbine Blade
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
A | Angle of attack of the airfoil |
Θ | Angle of inclination of vortex generators |
dB | Decibels |
FFT | Fast Fourier Transform |
fosc | Frequency of oscillation |
Hz | Hertz |
HAWT | Horizontal Axis Wind Turbine |
Vwind | Tunnel wind velocity |
VG’s | Vortex generators |
References
- Csalódi, R.; Czvetkó, T.; Sebestyén, V.; Abonyi, J. Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions. Energies 2022, 15, 7920. [Google Scholar] [CrossRef]
- Deshmukh, S.; Bhattacharya, S.; Jain, A.; Paul, A.R. Wind turbine noise and its mitigation techniques: A review. Energy Procedia 2019, 160, 633–640. [Google Scholar] [CrossRef]
- Bodling, A.; Sharma, A. Numerical investigation of noise reduction mechanisms in a bio-inspired airfoil. J. Sound Vib. 2019, 453, 314–327. [Google Scholar] [CrossRef]
- Kim, S.-M.; Jung, W.-S.; Kim, W.-H.; Bang, T.-K.; Lee, D.-H.; Kim, Y.-J.; Choi, J.-Y. Optimal Design of Permanent Magnet Synchronous Machine Based on Random Walk Method and Semi 3D Magnetic Equivalent Circuit Considering Overhang Effect. Energies 2022, 15, 7852. [Google Scholar] [CrossRef]
- Ponitz, B.; Triep, M.; Brücker, C. Aerodynamics of the Cupped Wings during Peregrine Falcon’s Diving Flight. Open J. Fluid Dyn. 2014, 4, 363–372. [Google Scholar] [CrossRef][Green Version]
- Ponitz, B.; Schmitz, A.; Fischer, D.; Bleckmann, H.; Brücker, C. Diving-Flight Aerodynamics of a Peregrine Falcon (Falco peregrinus). PLoS ONE 2014, 9, e86506. [Google Scholar] [CrossRef][Green Version]
- Gowree, E.R.; Jagadeesh, C.; Talboys, E.; Lagemann, C.; Brücker, C. Vortices enable the complex aerobatics of peregrine falcons. Commun. Biol. 2018, 1, 27. [Google Scholar] [CrossRef][Green Version]
- Srinivas, K.S.; Datta, A.; Bhattacharyya, A.; Kumar, S. Free-stream characteristics of bio-inspired marine rudders with different leading-edge configurations. Ocean Eng. 2018, 170, 148–159. [Google Scholar] [CrossRef]
- Vu, D.T.; Kieu, N.M.; Tien, T.Q.; Nguyen, T.P.; Vu, H.; Shin, S.; Vu, N.H. Solar Concentrator Bio-Inspired by the Superposition Compound Eye for High-Concentration Photovoltaic System up to Thousands Fold Factor. Energies 2022, 15, 3406. [Google Scholar] [CrossRef]
- Xiang, J.; Du, J. Energy Absorption Characteristics of Bio-Inspired Honeycomb. Mater. Sci. Eng. A 2022, 696, 283–289. [Google Scholar] [CrossRef]
- Flint, T.J.; Jermy, M.C.; New, T.H.; Ho, W.H. Computational study of a pitching bio-inspired corrugated airfoil. Int. J. Heat Fluid Flow 2017, 65, 328–341. [Google Scholar] [CrossRef]
- Shi, S.-X.; Liu, Y.-Z.; Chen, J.-M. An Experimental Study of Flow Around a Bio-Inspired Airfoil at Reynolds Number 2.0×103. J. Hydrodyn. 2012, 24, 410–419. [Google Scholar] [CrossRef]
- Post, M.L.; Decker, R.; Sapell, A.R.; Hart, J.S. Effect of bio-inspired sinusoidal leading-edges on wings. Aerosp. Sci. Technol. 2018, 81, 128–140. [Google Scholar] [CrossRef]
- Hassanalian, M.; Throneberry, G.; Abdelkefi, A. Wing shape and dynamic twist design of bio-inspired nano air vehicles for forward flight purposes. Aerosp. Sci. Technol. 2017, 68, 518–529. [Google Scholar] [CrossRef]
- Akay, B.; Enevoldsen, P.B. Wind Turbine Rotor Blade with Vortex Generators. U.S. Patent No 10,598,149, 24 March 2020. [Google Scholar]
- Wetzel, D.A.; Kinzie, K.W.; Luedke, J.G.; Herrig, A.; Petitjean, B.P. Vortex Generators for Wind Turbine Rotor Blades Having Noise-Reducing Features. U.S. Patent No 10,465,652, 5 November 2019. [Google Scholar]
- Troldborg, N.; Zahle, F.; Sørensen, N.N. Simulations of wind turbine rotor with vortex generators. J. Phys. Conf. Ser. 2016, 753, 22057. [Google Scholar] [CrossRef][Green Version]
- Tobin, J.R. Wind Turbine rotor Blade with Vortex Generators. 2018. Available online: https://patents.google.com/patent/US20180038342A1/en?oq=us20180038342a1 (accessed on 23 March 2023).
- Froese, M. How Vortex Generators Boost Wind-Turbine Performance and AEP. 2017. Available online: https://www.windpowerengineering.com/business-news-projects/vortex-generators-boost-wind-turbine-performance-aep/ (accessed on 23 March 2023).
- Velte, C.; Braud, C.; Coudert, S.; Foucaut, J.-M. Vortex Generator Induced Flow in a High Re Boundary Layer. J. Phys. Conf. Ser. 2014, 555, 012102. [Google Scholar] [CrossRef][Green Version]
- Tangler, J.L.; Somers, D.M. NREL Airfoi Families for HAWT’s; National Renewable Energy Laboratory: Golden, CO, USA, 1995.
- Dumitrescu, H.; Cardos, V. Rotational Effects on the Boundary-Layer Flow in Wind Turbines. AIAA J. 2013, 42, 408–411. [Google Scholar] [CrossRef]
- Wei, X.; Huang, B.; Liu, P.; Kanemoto, T.; Wang, L. Experimental investigation into the effects of blade pitch angle and axial distance on the performance of a counter-rotating tidal turbine. Ocean Eng. 2015, 110, 78–88. [Google Scholar] [CrossRef]
- Qamar, S.B.; Janajreh, I. Investigation of Effect of Cambered Blades on Darrieus VAWTs. Energy Procedia 2017, 105, 537–543. [Google Scholar] [CrossRef]
- Rivera, W.G.; Muñoz, H.D.C.; Catalano, F.M. Análisis Computacional del Control de la Capa Límite en Perfiles para Uso en Turbinas Eólicas. In Proceedings of the VI Congreso Internacional de Ingeniería Mecánica, Bogotá, Colombia, 2–4 May 2013. [Google Scholar]
- Xie, W.; Zeng, P.; Lei, L. Wind tunnel experiments for innovative pitch regulated blade of horizontal axis wind turbine. Energy 2015, 91, 1070–1080. [Google Scholar] [CrossRef]
- Eppler, R. Airfoils with boundary layer suction, design and off-design cases. Aerosp. Sci. Technol. 1999, 3, 403–415. [Google Scholar] [CrossRef]
- Lynette, R. Investigation of V o Generators for Au of Wind Turbine Performance; National Renewable Energy Laboratory: Boulder, CO, USA, 1996.
- Medina, R.; Quezada, F. Recursos Energéticos Distribuidos En Redes Inteligentes de Distribución. In Proceedings of the Encuentro Nacional de Jóvenes Investigadores, Ciudad de Mexico, Mexico, 29 September–2 October 2015. [Google Scholar] [CrossRef]
- Muñoz, Y.A. Optimizacion de Recursos Energéticos en Zonas Aisladas Mediante Estrategias de Suministro y Consumo. Ph.D. Thesis, Universitat Politècnica de Valencia, Valencia, Spain, 2012. [Google Scholar]
- Carrión, D.; Ortiz, L. Generación distribuida a partir de bicicletas estáticas y sistemas híbridos. Ingenius 2013. [Google Scholar] [CrossRef][Green Version]
- Cámara EH, R.; López LC, O.; Castellanos LJ, R.; De la Cruz May, E.; Escalante RJ, P. Diseño de una Micro Red Eléctrica Inteligente con Sistema Fotovoltaico y Celda de Combustible. Pist. Educ. 2016, 38, 120. [Google Scholar]
- Patiño, M.V. Clima Organizacional y Satisfacción Laboral en la Microred de Salud San Martin de Porres 2017. Mster’s Thesis, Universidad César Vallejo, Trujillo, Peru, 2017. [Google Scholar]
- Tébar-Martínez, E.M.; López-Martínez, J.M.; Navarro-Hernández, F.; Brotons-Sánchez, J.C. Una microred basada en energía solar como alternativa viable para la movilidad eléctrica. DYNA 2018, 93, 31–35. [Google Scholar] [CrossRef]
- Bonilla-Gámez, N. Propuesta de diseño de una microred en la comunidad de Santa Elena, Pérez Zeledón, basada en Whites Lane Smart Micro Grid. Rev. Tecnol. Marcha 2017, 30, 55. [Google Scholar] [CrossRef][Green Version]
- Herrera, C.; Correa, M.; Villada, V.; Vanegas, J.D.; García, J.G.; Nieto-Londoño, C.; Sierra-Pérez, J. Structural design and manufacturing process of a low scale bio-inspired wind turbine blades. Compos. Struct. 2018, 208, 1–12. [Google Scholar] [CrossRef]
- Lysen, E.H. Introduction to Wind Energy: Basic and Advanced Introduction to Wind Energy with Emphasis on Water Pumping Windmills; SWD Steering Committee Wind Energy Developing Countries: Amersfoort, The Netherlands, 1983; Available online: https://books.google.com.co/books?id=c9FoHQAACAAJ (accessed on 23 March 2023).
- Trivellato, F.; Castelli, M.R. Appraisal of Strouhal number in wind turbine engineering. Renew. Sustain. Energy Rev. 2015, 49, 795–804. [Google Scholar] [CrossRef]
- de Almeida, O.; Proença, A.R.; Self, R.H. Experimental characterization of velocity and acoustic fields of single-stream subsonic jets. Appl. Acoust. 2017, 127, 194–206. [Google Scholar] [CrossRef][Green Version]
- Rodrigues, S.; Marta, A. On addressing wind turbine noise with after-market shape blade add-ons. Renew. Energy 2019, 140, 602–614. [Google Scholar] [CrossRef]
- Gross, A.; Fasel, H.F.; Friederich, T.; Kloker, M.J. Numerical investigation of rotational augmentation for S822 wind turbine airfoil. Wind. Energy 2012, 15, 983–1007. [Google Scholar] [CrossRef]
- Lucca-Negro, O.; O’Doherty, T. Vortex breakdown: A review. Prog. Energy Combust. Sci. 2001, 27, 431–481. [Google Scholar] [CrossRef]
- Wang, T. A brief review on wind turbine aerodynamics. Theor. Appl. Mech. Lett. 2012, 2, 062001. [Google Scholar] [CrossRef][Green Version]
- Guo, Q.; Zhou, L.; Wang, Z. Comparison of BEM-CFD and full rotor geometry simulations for the performance and flow field of a marine current turbine. Renew. Energy 2015, 75, 640–648. [Google Scholar] [CrossRef]
- Plaza, B.; Bardera, R.; Visiedo, S. Comparison of BEM and CFD results for MEXICO rotor aerodynamics. J. Wind Eng. Ind. Aerodyn. 2015, 145, 115–122. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parra, H.G.; Ceron, H.D.; Gomez, W.; Gaona, E.E. Experimental Analysis of Oscillatory Vortex Generators in Wind Turbine Blade. Energies 2023, 16, 4343. https://doi.org/10.3390/en16114343
Parra HG, Ceron HD, Gomez W, Gaona EE. Experimental Analysis of Oscillatory Vortex Generators in Wind Turbine Blade. Energies. 2023; 16(11):4343. https://doi.org/10.3390/en16114343
Chicago/Turabian StyleParra, Hector G., Hernan D. Ceron, William Gomez, and Elvis E. Gaona. 2023. "Experimental Analysis of Oscillatory Vortex Generators in Wind Turbine Blade" Energies 16, no. 11: 4343. https://doi.org/10.3390/en16114343
APA StyleParra, H. G., Ceron, H. D., Gomez, W., & Gaona, E. E. (2023). Experimental Analysis of Oscillatory Vortex Generators in Wind Turbine Blade. Energies, 16(11), 4343. https://doi.org/10.3390/en16114343