A Synergistic Effect of Potassium and Transition Metal Compounds on the Catalytic Behaviour of Hydrolysis Lignin in CO2-Assisted Gasification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Synthetic Procedure
3. Results and Discussion
3.1. SEM with EDX Characterisation
3.2. TEM Characterisation
3.3. XRD and Electron Diffraction Characterisation
3.4. Catalytic Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akbarian, A.; Andooz, A.; Kowsari, E.; Ramakrishna, S.; Asgari, S.; Cheshmeh, Z.A. Challenges and opportunities of lignocellulosic biomass gasification in the path of circular bioeconomy. Bioresour. Technol. 2022, 362, 127774. [Google Scholar] [CrossRef]
- Evdokimenko, N.D.; Kapustin, G.I.; Tkachenko, O.P.; Kalmykov, K.B.; Kustov, A.L. Zn Doping Effect on the Performance of Fe-Based Catalysts for the Hydrogenation of CO2 to Light Hydrocarbons. Molecules 2022, 27, 1065. [Google Scholar] [CrossRef] [PubMed]
- Evdokimenko, N.; Yermekova, Z.; Roslyakov, S.; Tkachenko, O.; Kapustin, G.; Bindiug, D.; Kustov, A.; Mukasyan, A.S. Sponge-like CoNi Catalysts Synthesized by Combustion of Reactive Solutions: Stability and Performance for CO2 Hydrogenation. Materials 2022, 15, 5129. [Google Scholar] [CrossRef] [PubMed]
- Leybo, D.; Firestein, K.L.; Evdokimenko, N.D.; Ryzhova, A.A.; Baidyshev, V.S.; Chepkasov, I.V.; Popov, Z.I.; Kustov, A.L.; Konopatsky, A.S.; Golberg, D.V.; et al. Ball-Milled Processed, Selective Fe/h-BN Nanocatalysts for CO2 Hydrogenation. ACS Appl. Nano Mater. 2022, 5, 16475–16488. [Google Scholar] [CrossRef]
- Kustov, L.M.; Kustov, A.L.; Salmi, T. Processing of lignocellulosic polymer wastes using microwave irradiation. Mendeleev Commun. 2022, 32, 1–8. [Google Scholar] [CrossRef]
- Kustov, L.M.; Tarasov, A.L.; Nissenbaum, V.D.; Kustov, A.L. Dry reforming of lignin: The effect of impregnation with iron. Mendeleev Commun. 2021, 31, 376–378. [Google Scholar] [CrossRef]
- Dahmen, N.; Lewandowski, I.; Zibek, S.; Weidtmann, A. Integrated lignocellulosic value chains in a growing bioeconomy: Status quo and perspectives. GCB Bioenergy 2019, 11, 107–117. [Google Scholar] [CrossRef]
- Rinaldi, R.; Jastrzebski, R.; Clough, M.T.; Ralph, J.; Kennema, M.; Bruijnincx, P.C.A.; Weckhuysen, B.M. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angew. Chem.-Int. Ed. 2016, 55, 8164–8215. [Google Scholar] [CrossRef] [PubMed]
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.; et al. Lignin valorization: Improving lignin processing in the biorefinery. Science 2014, 344, 1246843. [Google Scholar] [CrossRef]
- Alam, M.; DebRoy, T. Reaction between CO2 and coke doped with NaCN. Carbon 1987, 25, 279–288. [Google Scholar] [CrossRef]
- Nzihou, A.; Stanmore, B.; Sharrock, P.; Nzihou, A.; Stanmore, B.; Sharrock, P. A review of catalysts for the gasification of biomass char, with some reference to coal. Energy 2013, 58, 305–317. [Google Scholar] [CrossRef]
- Matsunami, J.; Yoshida, S.; Oku, Y.; Yokota, O.; Tamaura, Y.; Kitamura, M. Coal gasification by CO2 gas bubbling in molten salt for solar/fossil energy hybridization. Sol. Energy 2000, 68, 257–261. [Google Scholar] [CrossRef]
- Popa, T.; Fan, M.; Argyle, M.D.; Slimane, R.B.; Bell, D.A.; Towler, B.F. Catalytic gasification of a Powder River Basin coal. Fuel 2013, 103, 161–170. [Google Scholar] [CrossRef]
- Namkung, H.; Yuan, X.; Lee, G.; Kim, D.; Kang, T.J.; Kim, H.T. Reaction characteristics through catalytic steam gasification with ultra clean coal char and coal. J. Energy Inst. 2014, 87, 253–262. [Google Scholar] [CrossRef]
- Hengel, T.D.; Walker, P.L. Catalysis of lignite char gasification by exchangeable calcium and magnesium. Fuel 1984, 63, 1214–1220. [Google Scholar] [CrossRef]
- Devi, T.G.; Kannan, M.P. Calcium catalysis in air gasification of cellulosic chars. Fuel 1998, 77, 1825–1830. [Google Scholar] [CrossRef]
- Chen, S.G.; Yang, R.T. Mechanism of alkali and alkaline earth catalyzed gasification of graphite by CO2 and H2O studied by electron microscopy. J. Catal. 1992, 138, 12–23. [Google Scholar] [CrossRef]
- Furimsky, E.; Sears, P.; Suzuki, T. Iron-Catalyzed Gasification of Char in CO2. Energy Fuels 1988, 2, 634–639. [Google Scholar] [CrossRef]
- Figueiredo, J.L.; Rivera-Utrilla, J.; Ferro-Garcia, M.A. Gasification of active carbons of different texture impregnated with nickel, cobalt and iron. Carbon 1987, 25, 703–708. [Google Scholar] [CrossRef]
- Gokon, N.; Hasegawa, N.; Kaneko, H.; Aoki, H.; Tamaura, Y.; Kitamura, M. Photocatalytic effect of ZnO on carbon gasification with CO2 for high temperature solar thermochemistry. Sol. Energy Mater. Sol. Cells 2003, 80, 335–341. [Google Scholar] [CrossRef]
- Kurbatova, N.A.; El’Man, A.R.; Bukharkina, T.V. Application of catalysts to coal gasification with carbon dioxide. Kinet. Catal. 2011, 52, 739–748. [Google Scholar] [CrossRef]
- Kodama, T.; Funatoh, A.; Shimizu, K.; Kitayama, Y. Kinetics of metal oxide-catalyzed CO2 gasification of coal in a fluidized-bed reactor for solar thermochemical process. Energy Fuels 2001, 15, 1200–1206. [Google Scholar] [CrossRef]
- Monterroso, R.; Fan, M.; Zhang, F.; Gao, Y.; Popa, T.; Argyle, M.D.; Towler, B.; Sun, Q. Effects of an environmentally-friendly, inexpensive composite iron-sodium catalyst on coal gasification. Fuel 2014, 116, 341–349. [Google Scholar] [CrossRef]
- Huang, Z.; Deng, Z.; Chen, D.; He, F.; Liu, S.; Zhao, K.; Wei, G.; Zheng, A.; Zhao, Z.; Li, H. Thermodynamic analysis and kinetic investigations on biomass char chemical looping gasification using Fe-Ni bimetallic oxygen carrier. Energy 2017, 141, 1836–1844. [Google Scholar] [CrossRef]
- Xie, Y.; Su, Y.; Wang, P.; Zhang, S.; Xiong, Y. In-situ catalytic conversion of tar from biomass gasification over carbon nanofibers- supported Fe-Ni bimetallic catalysts. Fuel Process. Technol. 2018, 182, 77–87. [Google Scholar] [CrossRef]
- Guo, X.; Li, N.; Zhang, T. Preparation of hydrogen-rich gas from waste polyurethane foam by steam gasification and catalytic reforming in a two-stage fixed bed reactor. J. Mater. Cycles Waste Manag. 2021, 23, 1955–1963. [Google Scholar] [CrossRef]
- Chan, F.L.; Umeki, K.; Tanksale, A. Kinetic study of catalytic steam gasification of biomass by using reactive flash volatilisation. ChemCatChem 2015, 7, 1329–1337. [Google Scholar] [CrossRef]
- Carpio, R.B.; Avendaño, C.I.L.; Basbas, C.A.; Habulan, A.A.; Guerrero, G.A.M.; Maguyon-Detras, M.C.; Bambase, M.E. Assessing the effect of K2CO3 and aqueous phase recycling on hydrothermal liquefaction of corn stover. Bioresour. Technol. Rep. 2022, 18, 14–21. [Google Scholar] [CrossRef]
- Karagöz, S.; Bhaskar, T.; Muto, A.; Sakata, Y.; Oshiki, T.; Kishimoto, T. Low-temperature catalytic hydrothermal treatment of wood biomass: Analysis of liquid products. Chem. Eng. J. 2005, 108, 127–137. [Google Scholar] [CrossRef]
- Meng, L.; Wang, M.; Yang, H.; Ying, H.; Chang, L. Catalytic effect of alkali carbonates on CO2 gasification of Pingshuo coal. Min. Sci. Technol. 2011, 21, 587–590. [Google Scholar] [CrossRef]
- Li, Y.; Yang, H.; Hu, J.; Wang, X.; Chen, H. Effect of catalysts on the reactivity and structure evolution of char in petroleum coke steam gasification. Fuel 2014, 117, 1174–1180. [Google Scholar] [CrossRef]
- Kuchonthara, P.; Vitidsant, T.; Tsutsumi, A. Catalytic effects of potassium on lignin steam gasification with γ-Al2O3 as a bed material. Korean J. Chem. Eng. 2008, 25, 656–662. [Google Scholar] [CrossRef]
- Zhang, D.K.; Poeze, A. Variation of sodium forms and char reactivity during gasification of a south Australian low-rank coal. Proc. Combust. Inst. 2000, 28, 2337–2344. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, W.; Wu, H.; Jensen, P.A.; Song, W.; Du, L.; Li, S. Steam gasification of char derived from penicillin mycelial dreg and lignocellulosic biomass: Influence of P, K and Ca on char reactivity. Energy 2021, 228, 120605. [Google Scholar] [CrossRef]
- Tkachenko, O.P.; Tarasov, A.L.; Mishin, I.V.; Kustov, L.M. Study of Fe- and Ni-Containing Lignins by Diffuse Reflectance IR Spectroscopy and X-ray Diffraction. Russ. J. Phys. Chem. A 2020, 94, 725–730. [Google Scholar] [CrossRef]
- Mross, W.D. Alkali Doping in Heterogeneous Catalysis. Catal. Rev. 1983, 25, 591–637. [Google Scholar] [CrossRef]
- Medvedev, A.A.; Kustov, A.L.; Beldova, D.A.; Kravtsov, A.V.; Kalmykov, K.B.; Sarkar, B.; Kostyukhin, E.M.; Kustov, L.M. Gasification of hydrolysis lignin with CO2 in the presence of Fe and Co compounds. Mendeleev Commun. 2022, 32, 402–404. [Google Scholar] [CrossRef]
- Richardson, Y.; Tanoh, S.T.; Julbe, A.; Blin, J. Improving the kinetics of the CO2 gasification of char through the catalyst/biomass integration concept. Fuel 2015, 154, 217–221. [Google Scholar] [CrossRef]
- Łamacz, A.; Krztoń, A.; Djéga-Mariadassou, G. Steam reforming of model gasification tars compounds on nickel based ceria-zirconia catalysts. Catal. Today 2011, 176, 347–351. [Google Scholar] [CrossRef]
- Bogdan, V.I.; Koklin, A.E.; Kustov, A.L.; Pokusaeva, Y.A.; Bogdan, T.V.; Kustov, L.M. Carbon Dioxide Reduction with Hydrogen on Fe, Co Supported Alumina and Carbon Catalysts under Supercritical Conditions. Molecules 2021, 26, 2883. [Google Scholar] [CrossRef]
- Hanamura, K.; Kameya, Y. Hydrogen-rich gasification of biomass using porous catalyst. Greenh. Gas Control Technol. 2005, 81, 2579–2582. [Google Scholar] [CrossRef]
- Murakami, K.; Sato, M.; Kato, T.; Sugawara, K. Influence of difference in chemical compositions of rice straw on hydrogen formation in nickel-catalyzed steam gasification. Fuel Process. Technol. 2012, 95, 78–83. [Google Scholar] [CrossRef]
- Jiang, Y.; Yan, H.; Guo, Q.; Wang, F.; Wang, J. Multiple synergistic effects exerted by coexisting sodium and iron on catalytic steam gasification of coal char. Fuel Process. Technol. 2019, 191, 1–10. [Google Scholar] [CrossRef]
- Patra, D.; Patra, B.R.; Pattnaik, F.; Hans, N.; Kushwaha, A. Recent evolution in green technologies for effective valorization of food and agricultural wastes. In Emerging Trends to Approaching Zero Waste; Hussain, C.M., Singh, S., Goswami, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 103–132. ISBN 978-0-323-85403-0. [Google Scholar]
- Zharova, P.; Arapova, O.V.; Konstantinov, G.I.; Chistyakov, A.V.; Tsodikov, M.V. Kraft Lignin Conversion into Energy Carriers under the Action of Electromagnetic Radiation. J. Chem. 2019, 2019, 6480354. [Google Scholar] [CrossRef]
- Tsodikov, M.V.; Nikolaev, S.A.; Chistyakov, A.V.; Bukhtenko, O.V.; Fomkin, A.A. Formation of adsorbents from Fe-containing processing residues of lignin. Microporous Mesoporous Mater. 2020, 298, 110089. [Google Scholar] [CrossRef]
- Tsodikov, M.D.; Ellert, O.G.; Arapova, O.V.; Nikolaev, S.A.; Chistyakov, A.V.; Maksimov, Y.V. Benefit of Fe-containing catalytic systems for dry reforming of lignin to syngas under microwave radiation. Chem. Eng. Trans. 2018, 65, 367–372. [Google Scholar] [CrossRef]
- Tsodikov, M.V.; Chistyakov, A.V.; Konstantinov, G.I.; Nikolaev, S.A.; Borisov, R.S.; Levin, I.C.; Maksimov, Y.V.; Gekhman, A.E. Microwave-Stimulated Conversion of a Tar/Lignin Blend into Hydrocarbons in a Plasma-Catalytic Mode. Russ. J. Appl. Chem. 2021, 94, 1513–1524. [Google Scholar] [CrossRef]
- Tsodikov, M.V.; Ellert, O.G.; Nikolaev, S.A.; Arapova, O.V.; Konstantinov, G.I.; Bukhtenko, O.V.; Vasil’kov, A.Y. The role of nanosized nickel particles in microwave-assisted dry reforming of lignin. Chem. Eng. J. 2017, 309, 628–637. [Google Scholar] [CrossRef]
- Medvedev, A.A.; Kustov, A.L.; Beldova, D.A.; Kalmykov, K.B.; Mashkin, M.Y.; Shesterkina, A.A.; Dunaev, S.F.; Kustov, L.M. Influence of the Method of Fe Deposition on the Surface of Hydrolytic Lignin on the Activity in the Process of Its Conversion in the Presence of CO2. Int. J. Mol. Sci. 2023, 24, 1279. [Google Scholar] [CrossRef]
- Medvedev, A.A.; Beldova, D.A.; Kalmykov, K.B.; Kravtsov, A.V.; Tedeeva, M.A.; Kustov, L.M.; Dunaev, S.F.; Kustov, A.L. Carbon Dioxide Assisted Conversion of Hydrolysis Lignin Catalyzed by Nickel Compounds. Energies 2022, 15, 6774. [Google Scholar] [CrossRef]
- Arapova, O.V.; Chistyakov, A.V.; Palankoev, T.A.; Bondarenko, G.N.; Tsodikov, M.V. Microwave-Assisted Lignin Conversion to Liquid Products in the Presence of Iron and Nickel. Pet. Chem. 2020, 60, 1019–1025. [Google Scholar] [CrossRef]
- Arapova, O.V.; Ellert, O.G.; Borisov, R.S.; Chistyakov, A.V.; Vasil’kov, A.Y.; Tsodikov, M.V.; Gekhman, A.E. Effect of the Method of Synthesizing a Nickel-Containing Catalyst on Lignin Conversion in Liquid-Phase Hydrodepolymerization. Pet. Chem. 2019, 59, 111–119. [Google Scholar] [CrossRef]
- Fedotov, A.S.; Antonov, D.O.; Uvarov, V.I.; Korchak, V.N.; Tsodikov, M.V.; Moiseev, I.I. Highly selective carbon dioxide gasification of the biomass fermentation products. Dokl. Chem. 2014, 459, 205–208. [Google Scholar] [CrossRef]
- Tsodikov, M.V.; Ellert, O.G.; Nikolaev, S.A.; Arapova, O.V.; Bukhtenko, O.V.; Maksimov, Y.V.; Kirdyankin, D.I.; Vasil’kov, A.Y. Fe-containing nanoparticles used as effective catalysts of lignin reforming to syngas and hydrogen assisted by microwave irradiation. J. Nanopart. Res. 2018, 20, 86. [Google Scholar] [CrossRef]
- Minakshi, M. Lithium intercalation into amorphous FePO4 cathode in aqueous solutions. Electrochim. Acta 2010, 55, 9174–9178. [Google Scholar] [CrossRef]
- Liu, R.; Ma, Z.; Sears, J.D.; Juneau, M.; Neidig, M.L.; Porosoff, M.D. Identifying correlations in Fischer-Tropsch synthesis and CO2 hydrogenation over Fe-based ZSM-5 catalysts. J. CO2 Util. 2020, 41, 101290. [Google Scholar] [CrossRef]
- Aasly, K.M.; Terje Myrhaug, E.; Aasly, K.; Malvik, T.; Myrhaug, E. Advanced methods to characterize thermal properties of quartz. INFACON 2007, 11, 381–392. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, D.; Minakshi, M.; Quadsia, S.; Ahuja, R. Activation-Induced Surface Modulation of Biowaste-Derived Hierarchical Porous Carbon for Supercapacitors. Chempluschem 2022, 87, e202200126. [Google Scholar] [CrossRef]
- Liu, R.; Leshchev, D.; Stavitski, E.; Juneau, M.; Agwara, J.N.; Porosoff, M.D. Selective hydrogenation of CO2 and CO over potassium promoted Co/ZSM-5. Appl. Catal. B Environ. 2021, 284, 119787. [Google Scholar] [CrossRef]
Sample | n(CO) Outlet, mmol | n(C) in the Sample, mmol | n(CO2) Inlet, mmol |
---|---|---|---|
Pure | 24.2 | 31.6 | 40.2 |
Co | 42.3 | 30.1 | |
Fe | 30.3 | 30.1 | |
Ni | 31.7 | 30.1 | |
0.5K | 24.2 | 31.5 | |
0.5K-Co | 45.9 | 29.9 | |
0.5K-Fe | 33.1 | 29.9 | |
0.5K-Ni | 30.1 | 29.9 | |
1K | 26.6 | 29.9 | |
1K-Co | 47.1 | 29.7 | |
1K-Fe | 35.1 | 29.7 | |
1K-Ni | 36.7 | 29.7 | |
3K | 34.7 | 30.7 | |
3K-Co | 52.0 | 29.4 | |
3K-Fe | 32.5 | 29.4 | |
3K-Ni | 33.3 | 29.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medvedev, A.A.; Kustov, A.L.; Beldova, D.A.; Polikarpova, S.B.; Ponomarev, V.E.; Murashova, E.V.; Sokolovskiy, P.V.; Kustov, L.M. A Synergistic Effect of Potassium and Transition Metal Compounds on the Catalytic Behaviour of Hydrolysis Lignin in CO2-Assisted Gasification. Energies 2023, 16, 4335. https://doi.org/10.3390/en16114335
Medvedev AA, Kustov AL, Beldova DA, Polikarpova SB, Ponomarev VE, Murashova EV, Sokolovskiy PV, Kustov LM. A Synergistic Effect of Potassium and Transition Metal Compounds on the Catalytic Behaviour of Hydrolysis Lignin in CO2-Assisted Gasification. Energies. 2023; 16(11):4335. https://doi.org/10.3390/en16114335
Chicago/Turabian StyleMedvedev, Artem A., Alexander L. Kustov, Daria A. Beldova, Svetlana B. Polikarpova, Valeriy E. Ponomarev, Elena V. Murashova, Pavel V. Sokolovskiy, and Leonid M. Kustov. 2023. "A Synergistic Effect of Potassium and Transition Metal Compounds on the Catalytic Behaviour of Hydrolysis Lignin in CO2-Assisted Gasification" Energies 16, no. 11: 4335. https://doi.org/10.3390/en16114335
APA StyleMedvedev, A. A., Kustov, A. L., Beldova, D. A., Polikarpova, S. B., Ponomarev, V. E., Murashova, E. V., Sokolovskiy, P. V., & Kustov, L. M. (2023). A Synergistic Effect of Potassium and Transition Metal Compounds on the Catalytic Behaviour of Hydrolysis Lignin in CO2-Assisted Gasification. Energies, 16(11), 4335. https://doi.org/10.3390/en16114335