# Substantiation of Drilling Parameters for Undermined Drainage Boreholes for Increasing Methane Production from Unconventional Coal-Gas Collectors

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{9}

^{10}

^{11}

^{12}

^{13}

^{*}

## Abstract

**:**

## 1. Introduction

_{2}emission units and increase the safety of mining. At the same time, in practice, the realization of the given concept is connected with the necessity of the decision on known problems of deep underground mining [7,8]. This is associated not only with geomechanical issues [9,10,11], but also with the inconsistency of the comining system components, which in turn does not allow for reducing the carbon footprint of the mined georesources [12]. The reduction of emissions of climate-active gases in the process of mining is possible only with the reliable operation of a network of surface cogeneration units [13,14] and the formation of smart “coal–energy–information” systems [15].

## 2. Materials and Methods

^{3}(thickness of 1.55 m, dip angle of 6°, methane content to 23 m

^{3}/t dry ashless mass) of JSC “mine named after AF Zasyadko”. The ventilation drift of the 18th eastern face was undercut to the conveyor drift above the worked-out 17th eastern face, leaving a 2 m interstrip pillar along the whole length of the ventilation drift behind the face, supported by the drift pads, installed along the drift axis, and a 2.0 m wide cast strip, along the worked-out space. To prevent oxidation of the coal pillar, left along the ventilation drift, the coal is constantly treated with a film-forming flame retardant. The system of development includes long columns along the strike, with a panel method of preparation of reserves. The work is carried out according to the one-sided scheme in the direction of the fresh air jet with oblique runs in the lower part of the face. The maximum permissible daily load on the longwall face is 2970 t/day at the air supply to the area—1548 m

^{3}/min.

_{4}(the methane concentration in the mouth of underground wells under constant vacuum pressure) as a function of the response from S (distance from the wellhead to the beginning of the panel during its development by reverse stroke—the “space” factor limited by the first dimension) is considered. There is also t (the time of making the measurement), S

_{L}(the position of the face relative to the panel beginning), and S

_{t}(the time at which the face occupies a certain position relative to the panel beginning). The above-mentioned show that this is a five-dimensional task, which, at best, is more correctly displayed by a set of four-dimensional ones. The previous studies made it possible to find approaches to how to lower the dimension during the transition from S

_{L}–S

_{t}to L [74]. This substantially facilitated approaches to identifying the interrelation of the effect of the remoteness from lava on gas flows. In this paper, an attempt was made to establish the inverse problem, which is the impossibility of considering gas flows without the “lava component”, which gradually transforms their dynamics (if we consider the dynamics separately from lava)—“lava influence profile”. In this regard, for the first time, when a four-dimensional space–time problem was considered limitedly (that is, without L in the CH

_{4}–t plane), according to the planned approach, the parameter S was introduced. This made it possible to consider the process under study as a function (given in the implicit form) of CH

_{4}of S (the space axes—distance from the beginning of the site “by analogy with the distance from the beginning of the site to the position of the lava in other moments of time”), t (measurement time).

_{4}) displayed in Table 2.

## 3. Results

^{2}= 0.71):

^{2}= 0.76):

## 4. Discussion

## 5. Conclusions

- It was found that a 50% increase in the inclination angle (from 40° to 60° with other drilling parameters being equal) leads to a uniform decrease in the productive work area distance (60%) from 13 to 5 m just before the roof landing, followed by a sharp increase in the area up to 35 m ahead of the face;
- If the inclination angle is 40°, the effect of advance degassing is characterized by significant irregularity, which is accompanied by nonlinear alternation of local maximums and minimums of methane emission, while the zone of productive work (ahead of the face) does not exceed 5 m before planting the roof, followed by a sharp but short-lived increase in distance to 40–42 m.

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Singh, R.; Khan, S.; Dsilva, J. A framework for assessing critical factor for circular economy practice implementation. J. Model. Manag.
**2022**. ahead of print. [Google Scholar] [CrossRef] - Singh, R.; Khan, S.; Centobelli, P. Investigating the Interplay between Social Performance and Organizational Factors Supporting Circular Economy Practices. Sustainability
**2022**, 14, 16781. [Google Scholar] [CrossRef] - Zhanbayev, R.A.; Yerkin, A.Y.; Shutaleva, A.V.; Irfan, M.; Gabelashvili, K.; Temirbaeva, G.R.; Chazova, I.Y.; Abdykadyrkyzy, R. State asset management paradigm in the quasi-public sector and environmental sustainability: Insights from the Republic of Kazakhstan. Front. Environ. Sci.
**2023**, 10, 1037023. [Google Scholar] [CrossRef] - Martirosyan, A.V.; Ilyushin, Y.V. The Development of the Toxic and Flammable Gases Concentration Monitoring System for Coalmines. Energies
**2022**, 15, 8917. [Google Scholar] [CrossRef] - Balovtsev, S.V. Higher rank aerological risks in coal mines. Min. Sci. Technol.
**2022**, 7, 310–319. [Google Scholar] [CrossRef] - Dyachkova, M.A.; Novgorodtseva, A.N.; Tomyuk, O.N. Humanitarization of technical university education: Effective strategies and practices. Perspekt. Nauki Obraz.
**2020**, 47, 75–87. [Google Scholar] [CrossRef] - Dvoynikov, M.V.; Leusheva, E.L. Modern trends in hydrocarbon resources development. J. Min. Sci.
**2022**, 258, 879–880. Available online: https://pmi.spmi.ru/index.php/pmi/article/view/16101 (accessed on 26 April 2023). - Ghorbani, Y.; Nwaila, G.T.; Zhang, S.E.; Bourdeau, J.E.; Cánovas, M.; Arzua, J.; Nikadat, N. Moving towards deep underground mineral resources: Drivers, challenges and potential solutions. Resour. Policy
**2023**, 80, 103222. [Google Scholar] [CrossRef] - Huang, L.; Wang, S.; Cai, X.; Song, Z. Mathematical Problems in Rock Mechanics and Rock Engineering. Mathematics
**2023**, 11, 67. [Google Scholar] [CrossRef] - Litvinenko, V. Advancement of geomechanics and geodynamics at the mineral ore mining and underground space development. In Proceedings of the Geomechanics and Geodynamics of Rock Masses At: International European Rock Mechanics Symposium (EUROCK), Saint Petersburg, Russia, 22–26 May 2018; pp. 3–18, WOSUID: WOS:000613258200001. [Google Scholar]
- Que, C.T.; Nevskaya, M.; Marinina, O. Coal Mines in Vietnam: Geological Conditions and Their Influence on Production Sustainability Indicators. Sustainability
**2021**, 13, 11800. [Google Scholar] [CrossRef] - Zhong, S.; Lin, D. Evaluation of the Coordination Degree of Coal and Gas Co-Mining System Based on System Dynamics. Sustainability
**2022**, 14, 16434. [Google Scholar] [CrossRef] - Borowski, M.; Zyczkowski, P.; Cheng, J.; Luczak, R.; Zwolinska, K. The Combustion of Methane from Hard Coal Seams in Gas Engines as a Technology Leading to Reducing Greenhouse Gas Emissions-Electricity Prediction Using ANN. Energies
**2020**, 13, 4429. [Google Scholar] [CrossRef] - Tailakov, O.V.; Zastrelov, D.N.; Utkaev, E.A.; Smyslov, A.L.; Kormin, A.N. Experience for coal mine methane utilization to generate thermal and electric power. In Proceedings of the Taishan Academic Forum–Project on Mine Disaster Prevention and Control, Qingdao, China, 17–20 October 2014; pp. 450–453. [Google Scholar] [CrossRef]
- Smirnova, A.; Varnavskiy, K.; Nepsha, F.; Kostomarov, R.; Chen, S. The Development of Coal Mine Methane Utilization Infrastructure within the Framework of the Concept “Coal-Energy-Information”. Energies
**2022**, 15, 8948. [Google Scholar] [CrossRef] - Li, Q.; Guo, J.; Zhang, C.; Yang, Y.; Ma, J.; Ren, Z. Research Findings on the Application of the Arch Structure Model in Coal Mining, a Review. Sustainability
**2022**, 14, 14714. [Google Scholar] [CrossRef] - Khanal, M.; Adhikary, D.; Balusu, R.; Wilkins, A.; Belle, B. Mechanical study of shear failure of vertical goaf drainage hole. Geotech. Geol. Eng.
**2022**, 40, 1899–1920. [Google Scholar] [CrossRef] - Rybak, J.; Khayrutdinov, M.M.; Kuziev, D.A.; Kongar-Syuryun, C.B.; Babyr, N.V. Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing. J. Min. Inst.
**2022**, 253, 61–70. [Google Scholar] [CrossRef] - Zhao, P.; Zhuo, R.; Li, S.; Shu, C.-M.; Jia, Y.; Lin, H.; Chang, Z.; Ho, C.-H.; Laiwang, B.; Xiao, P. Fractal characteristics of methane migration channels in inclined coal seams. Energy
**2021**, 225, 120127. [Google Scholar] [CrossRef] - Karimpouli, S.; Tahmasebi, P.; Ramandi, H.L. A review of experimental and numerical modeling of digital coalbed methane: Imaging, segmentation, fractures modeling and permeability prediction. Int. J. Coal Geol.
**2020**, 228, 103552. [Google Scholar] [CrossRef] - Ali, M.; Wang, E.; Li, Z.; Wang, X.; Khan, N.M.; Zang, Z.; Alarifi, S.S.; Fissha, Y. Analytical Damage Model for Predicting Coal Failure Stresses by Utilizing Acoustic Emission. Sustainability
**2023**, 15, 1236. [Google Scholar] [CrossRef] - Liu, P.; Nie, B.; Zhao, Z.; Zhao, Y.; Li, Q. Characterization of ultrasonic induced damage on multi-scale pore/fracture in coal using gas sorption and μ-CT 3D reconstruction. Fuel
**2023**, 332, 126178. [Google Scholar] [CrossRef] - Guo, H.; Yuan, L.; Shen, B.; Qu, Q.; Xue, J. Mining-induced strata stress changes, fractures and gas flow dynamics in multi-seam longwall mining. Int. J. Rock Mech. Min.
**2012**, 54, 129–139. [Google Scholar] [CrossRef] - Zaalishvili, V.B.; Hasanov, A.B.; Abbasov, E.Y.; Mammadova, D.N. Detailing the Pore Structure of Productive Intervals of Oil Wells Using the Color 3D Imaging. Energies
**2023**, 16, 217. [Google Scholar] [CrossRef] - Zhang, Z.; Zhang, R.; Cao, Z.; Gao, M.; Zhang, Y.; Xie, J. Mechanical Behavior and Permeability Evolution of Coal under Different Mining Induced Stress Conditions and Gas Pressures. Energies
**2020**, 13, 2677. [Google Scholar] [CrossRef] - Brigida, V.S.; Zinchenko, N.N. Methane release in drainage holes ahead of coal face. J. Min. Sci.
**2014**, 50, 60–64. [Google Scholar] [CrossRef] - Wang, S.; Liu, K.; Wang, S.; Liang, Y.; Tian, F. Three-dimensional stochastic distribution characteristics of void fraction in longwall mining-disturbed overburden. Bull. Eng. Geol. Environ.
**2022**, 81, 414. [Google Scholar] [CrossRef] - Chen, S.G.; Guo, H. Numerical Simulation of Bed Separation Development and Grout Injection into Separations. Geotech. Geol. Eng.
**2008**, 26, 375–385. [Google Scholar] [CrossRef] - Qu, Q.; Guo, H.; Balusu, R. Methane emissions and dynamics from adjacent coal seams in a high permeability multi-seam mining environment. Int. J. Coal Geol.
**2022**, 253, 103969. [Google Scholar] [CrossRef] - Khanal, M.; Qu, Q.; Zhu, Y.; Xie, J.; Zhu, W.; Hou, T.; Song, S. Characterization of Overburden Deformation and Subsidence Behavior in a Kilometer Deep Longwall Mine. Minerals
**2022**, 12, 543. [Google Scholar] [CrossRef] - Wang, K.; Fu, Q.; Xu, C.; Zhao, C.; Zhao, W.; Yang, T. Influence of Coal Pillars on the Stress and Permeability of Mining-Disturbed Coal Seams for CBM Drainage. Mining Metall. Explor.
**2022**, 39, 2449–2459. [Google Scholar] [CrossRef] - Xu, C.; Wang, K.; Li, X.; Yuan, L.; Zhao, C.; Guo, H. Collaborative gas drainage technology of high and low level roadways in high-gassy coal seam mining. Fuel
**2022**, 323, 124325. [Google Scholar] [CrossRef] - Qin, Z.; Shen, H.; Yuan, Y.; Gong, Z.; Chen, Z.; Xia, Y. Determination of Gas Extraction Borehole Parameters in Fractured Zone on ‘Borehole in Place of Roadway’ Based on RSM-GRA-GA. Processes
**2022**, 10, 1421. [Google Scholar] [CrossRef] - Yang, Y.; Liu, S. Integrated modeling of multi-scale transport in coal and its application for coalbed methane recovery. Fuel
**2021**, 300, 120971. [Google Scholar] [CrossRef] - Wang, G.; Fan, C.; Xu, H.; Liu, X.; Wang, R. Determination of Long Horizontal Borehole Height in Roofs and Its Application to Gas Drainage. Energies
**2018**, 11, 2647. [Google Scholar] [CrossRef] - Damghani, M.; Rahmannejad, R.; Najafi, M. Evaluation of the Effect of Coal Seam Dip on Stress Distribution and Displacement around the Mechanized Longwall Panel. J. Min. Sci.
**2019**, 55, 733–742. [Google Scholar] [CrossRef] - Ma, H.; Yang, Y.; Chen, Z. Numerical simulation of bitumen recovery via supercritical water injection with in-situ upgrading. Fuel
**2022**, 313, 122708. [Google Scholar] [CrossRef] - Shang, Y.; Wu, G.; Liu, Q.; Kong, D.; Li, Q. The drainage horizon determination of high directional long borehole and gas control effect analysis. Adv. Civ. Eng.
**2021**, 2021, 3370170. [Google Scholar] [CrossRef] - Zhang, Q.; Wang, E.; Li, Z.; Wang, H.; Xue, Z. Control of directional long borehole on gas drainage and optimal design: Case study. J. Nat. Gas Eng.
**2022**, 107, 104766. [Google Scholar] [CrossRef] - Zuev, B.Y.; Zubov, V.P.; Fedorov, A.S. Application prospects for models of equivalent materials in studies of geotechnical processes in underground mining of solid minerals. Eurasian Min.
**2019**, 1, 8–12. [Google Scholar] [CrossRef] - Kachurin, N.M.; Stas, G.V.; Kachurin, A.N. Dynamics of gas emission from exposed surface of gas bearing coal seams having medium thickness. Sustain. Dev. Mt. Territ.
**2021**, 3, 441–448. (In Russian) [Google Scholar] [CrossRef] - Kazanin, O.I.; Sidorenko, A.A.; Sidorenko, S.A.; Ivanov, V.V.; Mischo, H. High productive longwall mining of multiple gassy seams: Best practices and recommendations. Acta Montan. Slovaca
**2022**, 27, 152–162. [Google Scholar] [CrossRef] - Liu, Y.K.; Shao, S.H.; Wang, X.X.; Chang, L.P.; Cui, G.L.; Zhou, F.B. Gas flow analysis for the impact of gob gas ventholes on coalbed methane drainage from a longwall gob. J. Nat. Gas Sci. Eng.
**2016**, 36, 1312–1315. [Google Scholar] [CrossRef] - Xiao, P.; Liu, X.; Zhao, B. Experimental study on gas adsorption characteristics of coals under different Protodyakonov’s coefficient. Energy Rep.
**2022**, 8, 10614–10623. [Google Scholar] [CrossRef] - Szlazak, N.; Obracaj, D.; Korzec, M. Estimation of Gas Loss in Methodology for Determining Methane Content of Coal Seams. Energies
**2021**, 14, 982. [Google Scholar] [CrossRef] - Li, Q.; Xu, J.; Yan, F.; Peng, S.; Zhang, C.; Zhang, X. Evolution characteristics of reservoir parameters during coalbed methane drainage via in-seam horizontal boreholes. Powder Technol.
**2020**, 362, 591–603. [Google Scholar] [CrossRef] - Peng, S.; Jia, L.; Xu, J.; Zhang, C.; Li, Q.; Han, E. The production schedule optimization of a multilayer superposed CBM system: An experimental study. Powder Technol.
**2020**, 373, 99–108. [Google Scholar] [CrossRef] - Zhang, C.; Xu, J.; Wang, E.; Peng, S. Experimental Study on the Gas Flow Characteristics and Pressure Relief Gas Drainage Effect under Different Unloading Stress Paths. Geofluids
**2020**, 8, 8837962. [Google Scholar] [CrossRef] - Zhao, W.; Wang, K.; Zhang, R.; Dong, H.; Lou, Z.; An, F. Influence of combination forms of intact sub-layer and tectonically deformed sub-layer of coal on the gas drainage performance of boreholes: A numerical study. Int. J. Coal Sci. Technol.
**2020**, 7, 571–580. [Google Scholar] [CrossRef] - Kubrin, S.S.; Tailakov, O.V.; Sobolev, V.V.; Zakharov, V.N. The use of the Allan variation in the processing of the measured parameters of the methane-air mixture during the degassing of excavation sites. Ugol
**2022**, 12, 60–66. (In Russian) [Google Scholar] [CrossRef] - Brigida, V.S.; Golik, V.I.; Dzeranov, B.V. Modeling of Coalmine Methane Flows to Estimate the Spacing of Primary Roof Breaks. Mining
**2022**, 2, 809–821. [Google Scholar] [CrossRef] - Klyuev, R.V.; Morgoev, I.D.; Morgoeva, A.D.; Gavrina, O.A.; Martyushev, N.V.; Efremenkov, E.A.; Mengxu, Q. Methods of Forecasting Electric Energy Consumption: A Literature Review. Energies
**2022**, 15, 8919. [Google Scholar] [CrossRef] - Kabanov, E.I.; Korshunov, G.I.; Gridina, E.B. Algorithmic provisions for data processing under spatial analysis of risk of accidents at hazardous production facilities. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu
**2019**, 6, 117–121. [Google Scholar] [CrossRef] - Iakovleva, E.; Belova, M.; Soares, A.; Rassõlkin, A. On the Issues of Spatial Modeling of Non-Standard Profiles by the Example of Electromagnetic Emission Measurement Data. Sustainability
**2022**, 14, 574. [Google Scholar] [CrossRef] - Isametova, M.E.; Nussipali, R.; Martyushev, N.V.; Malozyomov, B.V.; Efremenkov, E.A.; Isametov, A. Mathematical Modeling of the Reliability of Polymer Composite Materials. Mathematics
**2022**, 10, 3978. [Google Scholar] [CrossRef] - Bosikov, I.I.; Klyuev, R.V.; Azhmukhamedov, I.M.; Revazov, V.C. Statistical dynamics-based estimation of ventilation control in coal mines. Min. Inf. Anal. Bull.
**2021**, 11, 123–135. (In Russian) [Google Scholar] [CrossRef] - Guo, Q.; Peng, H.; Hong, B.; Yao, H.; Zhu, Y.; Ding, H.; An, N.; Hong, Y. Variations of methane stable isotopic values from an Alpine peatland on the eastern Qinghai-Tibetan Plateau. Acta Geochim.
**2021**, 40, 473–483. [Google Scholar] [CrossRef] - Yao, H.; Peng, H.; Hong, B.; Guo, Q.; Ding, H.; Hong, Y.; Zhu, Y.; Cai, C.; Chi, J. Environmental Controls on Multi-Scale Dynamics of Net Carbon Dioxide Exchange From an Alpine Peatland on the Eastern Qinghai-Tibet Plateau. Front. Plant Sci.
**2022**, 12, 791343. [Google Scholar] [CrossRef] - Khan, S.A. Trigonometric ratios using algebraic methods. Math. Stat.
**2021**, 9, 899–907. [Google Scholar] [CrossRef] - Vorobieva, I.A.; Gvishiani, A.D.; Dzeboev, B.A.; Dzeranov, B.V.; Barykina, Y.V.; Antipova, A.O. Nearest Neighbor Method for Discriminating Aftershocks and Duplicates When Merging Earthquake Catalogues. Front. Earth Sci.
**2022**, 10, 820277. [Google Scholar] [CrossRef] - Zaalishvili, V.; Burdzieva, O.; Kanukov, A.; Zaks, T. Eco-Geophysical and Geoecological Factors in Assessing the State of the Geological Environment Based on the Analysis of Spatial Databases of the Territory of the Republic of North Ossetia-Alania. Appl. Sci.
**2022**, 12, 2644. [Google Scholar] [CrossRef] - Dai, L.; Lei, H.; Cheng, X.; Li, R. Prediction of coal seam gas content based on the correlation between gas basic parameters and coal quality indexes. Front. Energy Res.
**2023**, 10, 1096539. [Google Scholar] [CrossRef] - Zaki, M.M.; Chen, S.; Zhang, J.; Feng, F.; Khoreshok, A.A.; Mahdy, M.A.; Salim, K.M. A Novel Approach for Resource Estimation of Highly Skewed Gold Using Machine Learning Algorithms. Minerals
**2022**, 12, 900. [Google Scholar] [CrossRef] - Jafarpour, A.; Najafi, M. Selection of Compatible Coal Seam for Methane Drainage Operation Based on Uncertain Geological Conditions: A Hybrid Fuzzy Approach. Math. Probl. Eng.
**2022**, 2022, 4586979. [Google Scholar] [CrossRef] - Naveen, N.S.; Kishore, P.S.; Pujari, S.; Silas Kumar, M.D.; Jogi, K. Optimization through Taguchi and artificial neural networks on thermal performance of a radiator using graphene-based coolant. Proc. Inst. Mech. Eng. A J. Power Energy
**2022**, 236, 1680–1693. [Google Scholar] [CrossRef] - Adero, N.J.; Drebenstedt, C.; Prokofeva, E.N.; Vostrikov, A.V. Spatial data and technologies for geomonitoring of land use under aspect of mineral resource sector development. Eurasian Min.
**2020**, 1, 69–74. [Google Scholar] [CrossRef] - Lipilin, D.A.; Evtushenko, D.D. Assessment of the urban environment quality using geoinformation systems by the example of microdistricts of the city of Krasnodar. Russ. Geol. Geophys.
**2022**, 12, 195–210. (In Russian) [Google Scholar] [CrossRef] - Skripchinsky, A.V.; Badov, A.D.; Badov, O.A.; Borisov, D.D. Water protection zone state analysis of the Derbent city district on the basis of GIS technologies. Russ. Geol. Geophys.
**2022**, 12, 180–192. (In Russian) [Google Scholar] [CrossRef] - Golik, V.I.; Dmitrak, Y.V.; Brigida, V.S. Impact of duration of mechanochemical activation on enhancement of zinc leaching from polymetallic ore tailings. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu
**2020**, 1, 47–54. [Google Scholar] [CrossRef] - Qin, B.; Shi, Z.S.; Hao, J.F.; Ye, D.L.; Liang, B.; Sun, W.J. Analysis of the Space–Time Synergy of Coal and Gas Co-mining. ACS Omega
**2022**, 7, 13737–13749. [Google Scholar] [CrossRef] - Gutarevich, V.O.; Martyushev, N.V.; Klyuev, R.V.; Kukartsev, V.A.; Kukartsev, V.V.; Iushkova, L.V.; Korpacheva, L.N. Reducing Oscillations in Suspension of Mine Monorail Track. Appl. Sci.
**2023**, 13, 4671. [Google Scholar] [CrossRef] - Efremenkov, E.A.; Martyushev, N.V.; Skeeba, V.Y.; Grechneva, M.V.; Olisov, A.V.; Ens, A.D. Research on the Possibility of Lowering the Manufacturing Accuracy of Cycloid Transmission Wheels with Intermediate Rolling Elements and a Free Cage. Appl. Sci.
**2022**, 12, 5. [Google Scholar] [CrossRef] - Li, J.; Xuan, D.; Xu, J.; Dong, Z.; Wang, C. Compaction Response of Mining-Induced Rock Masses to Longwall Overburden Isolated Grouting. Minerals
**2023**, 13, 633. [Google Scholar] [CrossRef] - Dzhioeva, A.K.; Brigida, V.S. Spatial non-linearity of methane release dynamics in underground boreholes for sustainable mining. J. Min. Inst.
**2020**, 245, 522–530. [Google Scholar] [CrossRef] - Zhao, P.; An, X.; Li, S.; Kang, X.; Huang, Y.; Yang, J.; Jin, S. Study on the Pseudo-Slope Length Effect of Buried Pipe Extraction in Fully Mechanized Caving Area on Gas Migration Law in Goaf. Sustainability
**2023**, 15, 6628. [Google Scholar] [CrossRef] - Nepsha, F.S.; Voronin, V.A.; Liven, A.S.; Korneev, A.S. Feasibility study of using cogeneration plants at Kuzbass coal mines. J. Min. Inst.
**2023**, 259, 141–150. [Google Scholar] [CrossRef] - Li, J.; Liu, S.; Ren, W.; Liu, H.; Li, S.; Yan, K. Research on Engineering Practice and Effect Evaluation Method of Pressure Relief in Deep Rock Burst Danger Area of Coal Mine. Minerals
**2023**, 13, 570. [Google Scholar] [CrossRef] - Montano, J.; Coco, G.; Antolinez, J.A.A.; Beuzen, T.; Bryan, K.R.; Cagigal, L.; Castelle, B.; Davidson, M.A.; Goldstein, E.B.; Ibaceta, R.; et al. Blind testing of shoreline evolution models. Sci. Rep.
**2020**, 10, 2137. [Google Scholar] [CrossRef] - Ali, G.; Sajjad, M.; Kanwal, S.; Xiao, T.; Khalib, S.; Shoaib, F.; Gul, H.N. Spatial–temporal characterization of rainfall in Pakistan during the past half-century (1961–2020). Sci. Rep.
**2021**, 11, 6935. [Google Scholar] [CrossRef] - Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci.
**2021**, 7, e623. [Google Scholar] [CrossRef] - Golik, V.I.; Klyuev, R.V.; Martyushev, N.V.; Brigida, V.; Efremenkov, E.A.; Sorokova, S.N.; Mengxu, Q. Tailings Utilization and Zinc Extraction Based on Mechanochemical Activation. Materials
**2023**, 16, 726. [Google Scholar] [CrossRef] - Massaoudi, M.S.; Refaat, S.; Abu-Rub, H.; Chihi, I.; Oueslati, F.S. PLS-CNN-BiLSTM: An End-to-End Algo-rithm-Based Savitzky-Golay Smoothing and Evolution Strategy for Load Forecasting. Energies
**2020**, 13, 5464. [Google Scholar] [CrossRef] - Han, C.; Zhang, N.; Yang, H.; Liu, J.; Zhao, Q.; Huo, Y.; Song, K. Discontinuous deformation characteristics of deep buried roadway roof and linkage control of thick layer cross-boundary anchorage: A Case Study. Energies
**2023**, 15, 2806. [Google Scholar] [CrossRef] - Zhang, F.; Wang, G.; Wang, B. Study and Application of High-Level Directional Extraction Borehole Based on Mining Fracture Evolution Law of Overburden Strata. Sustainability
**2023**, 15, 2806. [Google Scholar] [CrossRef] - Cao, L.; Sun, J.; Zhang, B.; Lu, N.; Xu, Y. Sensitivity analysis of the temperature profile changing law in the production string of a high-pressure high-temperature gas well considering the coupling relation among the gas flow friction, gas properties, temperature, and pressure. Front. Phys.
**2022**, 10, 1050229. [Google Scholar] [CrossRef] - Zhang, H.; Cheng, Y.; Yuan, L.; Wang, L.; Jiang, J.; Li, G. Gas extraction challenge and the application of hydraulic cavity technology in the Shijiazhuang coalmine, Qinshui basin. Energy Sources A Recovery Util. Environ. Eff.
**2019**, 43, 1–23. [Google Scholar] [CrossRef] - Niu, Y.; Zhang, X.; Wang, E.; Li, Z.; Cheng, Z.; Duan, X.; Li, H.; Wei, Y.; Qian, J.; Cai, G.; et al. A new method of monitoring the stability of boreholes for methane drainage from coal seams. Meas. J. Int. Meas. Confed.
**2020**, 154, 107521. [Google Scholar] [CrossRef] - Qu, Q.; Guo, H.; Khanal, M. Monitoring and analysis of ground movement from multi-seam mining. Int. J. Rock Mech. Min.
**2021**, 148, 104949. [Google Scholar] [CrossRef] - Brigida, V.S.; Dmitrak, Y.V.; Gabaraev, O.Z.; Golik, V.I. Use of destressing drilling to ensure safety of Donbass gas-bearing coal seams extraction. Occup. Saf. industry.
**2019**, 3, 7–11. (In Russian) [Google Scholar] [CrossRef] - Liu, Y.; Chang, L.; Zhou, F.; Tan, D.; Liu, L.; Kang, J.; Tian, H. Numerical modeling of gas flow in deformed well casing for the prediction of local resistance coefficients pertinent to longwall mining and its engineering evaluation. Environ. Earth. Sci.
**2017**, 76, 686. [Google Scholar] [CrossRef] - Kunshin, A.; Dvoynikov, M.; Timashev, E.; Starikov, V. Development of Monitoring and Forecasting Technology Energy Efficiency of Well Drilling Using Mechanical Specific Energy. Energies
**2022**, 15, 7408. [Google Scholar] [CrossRef] - Dzhioeva, A.K. Improvement of Underground Leaching Technology while Ensuring Environmentally Safe Development of Ore Deposits. Occup. Saf. industry.
**2022**, 9, 62–68. (In Russian) [Google Scholar] [CrossRef] - Rakishev, B.; Kenzhetaev, Z.; Mataev, M.; Togizov, K. Improving the Efficiency of Downhole Uranium Production Using Oxygen as an Oxidizer. Minerals
**2022**, 12, 1005. [Google Scholar] [CrossRef] - Bosikov, I.I.; Klyuev, R.V.; Mayer, A.V. Comprehensive assessment of hydraulic fracturing technology efficiency for well construction during hydrocarbon production. J. Min. Inst.
**2022**, 258, 1018–1025. [Google Scholar] [CrossRef] - Chećko, J.; Urych, T.; Magdziarczyk, M.; Smolinski, A. Research on the Processes of Injecting CO
_{2}into Coal Seams with CH_{4}Recovery Using Horizontal Wells. Energies**2020**, 13, 416. [Google Scholar] [CrossRef] - Brigida, V.S.; Golik, V.I.; Dmitrak, Y.V.; Gabaraev, O.Z. Ensuring Stability of Undermining Inclined Drainage Holes During Intensive Development of Multiple Gas-Bearing Coal Layers. J. Min. Inst.
**2019**, 239, 497–501. [Google Scholar] [CrossRef] - Cao, L.; Sun, J.; Zhang, B.; Lu, N.; Xu, Y. Analysis of Multiple Annular Pressure in Gas Storage Well and High-Pressure Gas Well. Energy Eng.
**2023**, 120, 35–48. [Google Scholar] [CrossRef] - Bosikov, I.I.; Egorova, E.V.; Karpikov, A.V. Estimation of the optimal direction of the horizontal borehole relative to the minimum and maximum formation stress. IOP Conf. Ser. Earth Environ. Sci.
**2022**, 1021, 012066. [Google Scholar] [CrossRef] - Slastunov, S.; Kolikov, K.; Batugin, A.; Sadov, A.; Khautiev, A. Improvement of Intensive In-Seam Gas Drainage Technology at Kirova Mine in Kuznetsk Coal Basin. Energies
**2022**, 15, 1047. [Google Scholar] [CrossRef] - Hosseini, A.; Najafi, M. Determination of methane desorption zone for the design of a drainage borehole pattern (case study: E4 panel of the tabas mechanized coal mine, Iran). Rud. Geol. Naft. Zb.
**2021**, 36, 61–75. [Google Scholar] [CrossRef] - Hosseini, A.; Najafi, M.; Hossein Morshedy, A. Determination of suitable distance between methane drainage stations in Tabas mechanized coal mine (Iran) based on theoretical calculations and field investigation. J. Min. Inst.
**2022**, 258, 1050–1060. [Google Scholar] [CrossRef] - Leśniak, G.; Brunner, D.J.; Topór, T.; Słota-Valim, M.; Cicha-Szot, R.; Jura, B.; Skiba, J.; Przystolik, A.; Lyddall, B.; Plonka, G. Application of long-reach directional drilling boreholes for gas drainage of adjacent seams in coal mines with severe geological conditions. Int. J. Coal Sci. Technol.
**2022**, 9, 88. [Google Scholar] [CrossRef] - Li, H.; Liu, Y.; Wang, W.; Liu, M.; Ma, J.; Guo, X.; Guo, H. The integrated drainage technique of directional high-vel borehole of super large diameter on roof replacing roof extraction roadway: A case study of the underground Zhaozhuang Coal Mine. Energy Rep.
**2020**, 6, 2651–2666. [Google Scholar] [CrossRef] - Qu, Q.; Guo, H.; Yuan, L.; Shen, B.; Yu, G.; Qin, J. Rock Mass and Pore Fluid Response in Deep Mining: A Field Monitoring Study at Inclined Longwalls. Minerals
**2022**, 12, 463. [Google Scholar] [CrossRef] - Shi, Z.; Ye, D.; Hao, J.; Qin, B.; Li, G. Research on Gas Extraction and Cut Flow Technology for Lower Slice Pressure Relief Gas under Slice Mining of Extra-Thick Coal Seam. ACS Omega
**2022**, 7, 24531–24550. [Google Scholar] [CrossRef] [PubMed] - Zhang, C.; Song, Z.; Bai, Q.; Zhang, L.; Chen, J. Intensive field measurements for characterizing the permeability and methane release with the treatment process of pressure-relief mining. Sci. Rep.
**2022**, 12, 14847. [Google Scholar] [CrossRef] [PubMed] - Bosikov, I.I.; Martyushev, N.V.; Klyuev, R.V.; Savchenko, I.A.; Kukartsev, V.V.; Kukartsev, V.A.; Tynchenko, Y.A. Modeling and Complex Analysis of the Topology Parameters of Ventilation Networks When Ensuring Fire Safety While Developing Coal and Gas Deposits. Fire
**2023**, 6, 95. [Google Scholar] [CrossRef] - Kou, X.; Han, D.; Cao, Y.; Shang, H.; Li, H.; Zhang, X.; Yang, M. Acid Mine Drainage Discrimination Using Very High Resolution Imagery Obtained by Unmanned Aerial Vehicle in a Stone Coal Mining Area. Water
**2023**, 15, 1613. [Google Scholar] [CrossRef] - Plotnikova, N.V.; Skeeba, V.Y.; Martyushev, N.V.; Miller, R.A.; Rubtsova, N.S. Formation of high-carbon abrasion-resistant surface layers when high-energy heating by high-frequency currents. IOP Conf. Ser. Mater. Sci. Eng.
**2016**, 156, 012022. [Google Scholar] [CrossRef] - Kříbek, B.; Nyambe, I.; Sracek, O.; Mihaljevič, M.; Knésl, I. Impact of Mining and Ore Processing on Soil, Drainage and Vegetation in the Zambian Copperbelt Mining Districts: A Review. Minerals
**2023**, 13, 384. [Google Scholar] [CrossRef]

**Figure 1.**Location of wells N° 3 and N° 4 in the mine site: 1—coal seam; 2—well casing; 3—air roadway 18th eastern longwall; 4—roadway deformations; 5—haul roadway 17th eastern longwall; 6—lining; 7—goaf; 8—sandstone; 9—aleurolite; 10—claystone.

**Figure 2.**Dynamics of methane emission in “space–time” coordinates based on primary information: (

**a**) and (

**b**)—wells N° 3 and N° 4, respectively.

**Figure 4.**Evolution of methane concentration during degassing of the undermined rock mass: (

**a**) is well #3 and (

**b**) is #4 (the thickened curve is the line of face movement).

Borehole Length (m) | Inclination Angle β (°) | Hole Azimuth φ (°) | Hole Diameter (mm) | Casing Diameter (mm) | Casing Length (m) | Drillhole Spacing (m) | |
---|---|---|---|---|---|---|---|

N° 3 | 120 | 40 | 35 | 132 | 120 | 15 | 20–25 |

N° 4 | 120 | 60 | 60 | 132 | 120 | 15 | 20–25 |

N | Borehole #4 | Borehole #3 | ||||
---|---|---|---|---|---|---|

t, day | S, m | CH_{4}, % | t, day | S, m | CH_{4}, % | |

1 | 81 | 1330 | 2 | 81 | 1330 | 7 |

2 | 81 | 1310 | 0 | 81 | 1310 | 15 |

3 | 81 | 1280 | 0 | 81 | 1280 | 0 |

4 | 81 | 1260 | 3 | 81 | 1260 | 1 |

5 | 83 | 1330 | 11 | 83 | 1330 | 14 |

6 | 83 | 1310 | 1.5 | 83 | 1310 | 14 |

7 | 83 | 1280 | 0 | 83 | 1280 | 0.5 |

8 | 83 | 1260 | 1 | 83 | 1260 | 3.5 |

9 | 88 | 1280 | 3 | 88 | 1280 | 0 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Malozyomov, B.V.; Golik, V.I.; Brigida, V.; Kukartsev, V.V.; Tynchenko, Y.A.; Boyko, A.A.; Tynchenko, S.V.
Substantiation of Drilling Parameters for Undermined Drainage Boreholes for Increasing Methane Production from Unconventional Coal-Gas Collectors. *Energies* **2023**, *16*, 4276.
https://doi.org/10.3390/en16114276

**AMA Style**

Malozyomov BV, Golik VI, Brigida V, Kukartsev VV, Tynchenko YA, Boyko AA, Tynchenko SV.
Substantiation of Drilling Parameters for Undermined Drainage Boreholes for Increasing Methane Production from Unconventional Coal-Gas Collectors. *Energies*. 2023; 16(11):4276.
https://doi.org/10.3390/en16114276

**Chicago/Turabian Style**

Malozyomov, Boris V., Vladimir Ivanovich Golik, Vladimir Brigida, Vladislav V. Kukartsev, Yadviga A. Tynchenko, Andrey A. Boyko, and Sergey V. Tynchenko.
2023. "Substantiation of Drilling Parameters for Undermined Drainage Boreholes for Increasing Methane Production from Unconventional Coal-Gas Collectors" *Energies* 16, no. 11: 4276.
https://doi.org/10.3390/en16114276