# Dynamic Simulation of a Gas and Oil Separation Plant with Focus on the Water Output Quality

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods and Materials

## 3. Flowsheet Model

#### 3.1. First-Stage Separation

#### 3.2. Second-Stage Separation

#### 3.3. Third-Stage Separation

#### 3.4. Compounds

^{3}.

#### 3.5. Dynamic Modeling

#### 3.6. Thermodynamic Model

#### 3.6.1. Vessel Pressure

#### 3.6.2. Liquid Level

#### 3.7. Process Controls

#### 3.8. Gravity Settling

#### 3.9. Critical Droplet Diameter for Separation

#### 3.10. Initialization of Droplet Distribution

## 4. Simulation Results

#### 4.1. Dynamic Simulation Scheme

#### 4.2. Case 1

#### 4.3. Case 2

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Olsen, E.R.; Hooghoudt, J.-O.; Maschietti, M.; Andreasen, A. Optimization of an oil and gas separation plant for different reservoir fluids using an evolutionary algorithm. Energy Fuels
**2021**, 35, 5392–5406. [Google Scholar] [CrossRef] - Mahmoud, M.; Tariq, Z.; Kamal, M.S.; Al-Naser, M. Intelligent prediction of optimum separation parameters in the multistage crude oil production facilities. J. Pet. Explor. Prod. Technol.
**2019**, 9, 2979–2995. [Google Scholar] [CrossRef] - Schei, T.S.; Singstad, P.; Thunem, A.J. Transient Simulations of Gas-Oil-Water Separation Plants. Model. Identif. Control.
**1991**, 12, 27–46. [Google Scholar] [CrossRef] - Brambilla, A.; Vaccari, M.; Pannocchia, G. Analytical RTO for a critical distillation process based on offline rigorous simulation. IFAC-PapersOnLine
**2022**, 55, 143–148. [Google Scholar] [CrossRef] - Ahmed, T.; Makwashi, N.; Hameed, M. A review of gravity three-phase separators. J. Emerg. Trends Eng. Appl. Sci.
**2017**, 8, 143–153. [Google Scholar] - Dionne, M.M. The Dynamic Simulation of a Three Phase Separator. Master’s Thesis, University of Calgary, Calgary, AB, Canada, 1998. [Google Scholar]
- Sayda, A.F.; Taylor, J.H. Modeling and control of three-phase gravilty separators in oil production facilities. In Proceedings of the IEEE 2007 American Control Conference, New York, NY, USA, 9–13 July 2007; pp. 4847–4853. [Google Scholar]
- Grimes, B.A. Population balance model for batch gravity separation of crude oil and water emulsions. part i: Model formulation. J. Dispers. Sci. Technol.
**2012**, 33, 578–590. [Google Scholar] [CrossRef] - Backi, C.; Skogestad, S. A simple dynamic gravity separator model for separation efficiency evaluation incorporating level and pressure control. In Proceedings of the American Control Conference, Seattle, WA, USA, 24–26 May 2017; Volume 5. [Google Scholar]
- Song, S.; Liu, X.; Li, C.; Li, Z.; Zhang, S.; Wu, W.; Shi, B.; Kang, Q.; Wu, H.; Gong, J. Dynamic simulator for three-phase gravity separators in oil production facilities. ACS Omega
**2023**, 8, 6078–6089. [Google Scholar] [CrossRef] [PubMed] - Abdulkadir, M.; Hernandez-Perez, V. The effect of mixture velocity and droplet diameter on oil-water separator using computational fluid dynamics (cfd). In Proceedings of the 7th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Antalya, Turkey, 19–21 July 2010; Volume 61, pp. 35–43. [Google Scholar]
- Hallanger, A.; Soenstaboe, F.; Knutsen, T. A Simulation Model for Three-Phase Gravity Separators. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 6–9 October 1996; Society of Petroleum Engineers: Richardson, TX, USA, 1996; Volume 10. [Google Scholar] [CrossRef]
- Laleh, A.P.; Svrcek, W.Y.; Monnery, W.D. Computational Fluid Dynamics-Based Study of an Oilfield Separator—Part II: An Optimum Design. Oil Gas Facil.
**2013**, 2, 52–59. [Google Scholar] [CrossRef] - Ghaffarkhah, A.; Shahrabi, M.A.; Moraveji, M.K.; Eslami, H. Application of cfd for designing conventional three phase oilfield separator. Egypt. J. Pet.
**2017**, 26, 413–420. [Google Scholar] [CrossRef] - Farajzadeh, R.; Zaal, C.; Van den Hoek, P.; Bruining, J. Life-cycle assessment of water injection into hydrocarbon reservoirs using exergy concept. J. Clean. Prod.
**2019**, 235, 812–821. [Google Scholar] [CrossRef] - Azizov, I.; Dudek, M.; Øye, G. Emulsions in porous media from the perspective of produced water re-injection—A review. J. Pet. Sci. Eng.
**2021**, 206, 109057. [Google Scholar] [CrossRef] - Aspen HYSYS: Process Simulation Software. Available online: https://www.aspentech.com/en/products/engineering/aspen-hysys (accessed on 7 February 2023).
- Andrade, G.M.; de Menezes, D.Q.; Soares, R.M.; Lemos, T.S.; Teixeira, A.F.; Ribeiro, L.D.; Vieira, B.F.; Pinto, J.C. Virtual flow metering of production flow rates of individual wells in oil and gas platforms through data reconciliation. J. Pet. Sci. Eng.
**2022**, 208, 109772. [Google Scholar] [CrossRef] - Vaccari, M.; Pannocchia, G.; Tognotti, L.; Paci, M. Rigorous simulation of geothermal power plants to evaluate environmental performance of alternative configurations. Renew. Energy
**2023**, 207, 471–483. [Google Scholar] [CrossRef] - Peng, D.-Y.; Robinson, D. New two-constant equation of state. Ind. Eng. Chem. Fundam.
**1976**, 15, 59–64. [Google Scholar] [CrossRef] - Carrero, J. Beyond henry’s law in the gas—liquid equilibrium. ChemTexts
**2021**, 8, 1. [Google Scholar] [CrossRef] - Arnold, K.; Stewart, M. Chapter 5—Three-phase oil and water separation. In Surface Production Operations, 3rd ed.; Arnold, K., Stewart, M., Eds.; Gulf Professional Publishing: Burlington, MA, USA, 2008; pp. 244–315. [Google Scholar]
- Kharoua, N.; Khezzar, L.; Saadawi, H. Cfd modelling of a horizontal three-phase separator: A population balance approach. Am. J. Fluid Dyn.
**2013**, 3, 101–118. [Google Scholar] - Monnery, W.; Svrcek, W. Successfully specify three-phase separators. Chem. Eng. Prog.
**1994**, 90, 29–40. [Google Scholar] - Liu, X.; Wang, Z.; Liu, L.; Wu, C.; Mao, Q. Experimental study on characteristics of oil particle distribution in water-gelled crude oil two-phase flow system. Adv. Mech. Eng.
**2014**, 6, 205860. [Google Scholar]

Property | Value | Unit |
---|---|---|

Length | 12 | m |

Diameter | 3 | m |

Weir Height | 1.7 | m |

Weir Position | 9.0 | m |

Vapor Pressure Setpoint | 300 | kPa |

Water Level Setpoint | 1.6 | m |

Oil Outlet Setpoint * | 1 | m |

Inlet Mass Flow Separator 1 | 150,000 | kg/h |

Inlet Mass Flow Separator 2 | 250,000 | kg/h |

Inlet Pressure Sep1 & Sep2 | 500 | kPa |

Inlet Temp. Sep1 & Sep2 | 30 | °C |

Property | Value | Unit |
---|---|---|

Height | 10 | m |

Diameter | 10 | m |

Vapor Pressure Setpoint | 220 | kPa |

Water Level Setpoint | 2 | m |

Oil Outlet Setpoint | 5 | m |

Oil Nozzle Location (vertical) | 4.7 | m |

Water Nozzle Location (vertical) | 0 | m |

Property | Value | Unit |
---|---|---|

Height | 10 | m |

Diameter | 15 | m |

Vapor Pressure Setpoint | 160 | kPa |

Water Level Setpoint | 3 | m |

Oil Outlet Setpoint | 5.5 | m |

Oil Nozzle Location (vertical) | 5 | m |

Water Nozzle Location (vertical) | 0 | m |

Compound | Mole Fraction |
---|---|

CH4 | 0.95 |

N2 | 0.018 |

CO2 | 0.0147 |

H2S | 0.001 |

C2H6 | 0.0128 |

C3H8 | 0.0029 |

i-C4H10 | 0.0001 |

n-C4H10 | 0.0002 |

i-C5H12 | 0.0002 |

n-C5H12 | 0.0001 |

Dynamic Scheme | Monitored Time Frame | Modified Value | Dynamic Event |
---|---|---|---|

Case 1 | 0–120 min | InletFlow 3P-Separator 1 (V-100) | 250,000 kg/h at 30 min–150,000 kg/h at 60 min Linear Ramp Duration: 2 min |

Case 2 | 0–90 min | InletFlow 3P-Separator 2 (V-103) | 250,000 kg/h at 0 min Linear Ramp Duration: 2 min |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jonach, T.; Haddadi, B.; Jordan, C.; Harasek, M.
Dynamic Simulation of a Gas and Oil Separation Plant with Focus on the Water Output Quality. *Energies* **2023**, *16*, 4111.
https://doi.org/10.3390/en16104111

**AMA Style**

Jonach T, Haddadi B, Jordan C, Harasek M.
Dynamic Simulation of a Gas and Oil Separation Plant with Focus on the Water Output Quality. *Energies*. 2023; 16(10):4111.
https://doi.org/10.3390/en16104111

**Chicago/Turabian Style**

Jonach, Thorsten, Bahram Haddadi, Christian Jordan, and Michael Harasek.
2023. "Dynamic Simulation of a Gas and Oil Separation Plant with Focus on the Water Output Quality" *Energies* 16, no. 10: 4111.
https://doi.org/10.3390/en16104111