Economic Assessment of Operation Strategies on Park-Level Integrated Energy System Coupled with Biogas: A Case Study in a Sewage Treatment Plant
Abstract
:1. Introduction
2. Methodology
2.1. System Description
2.2. Constraints on Energy Balance and Conversion
2.3. Constraints on Operation Strategies
- (1)
- If and → and .
- (2)
- If and , it will have two options: option I, the ICE operates to point C0, and the excess heat is evacuated or option II, the ICE operates to point , and the grid supplies the shortage of electricity. The algorithm will compare the cost of the two options and choose the lower-cost strategy.
- (3)
- If and , it will also have two options: option I, the ICE operates to point C0, and insufficient heat is supplied by the gas-fired boiler or option II, the ICE operates to point , and the additional electricity is transferred to the grid. The algorithm will compare the cost of the two options and choose the lower-cost strategy.
2.4. Objective Function
3. Case Setup
4. Results and Discussion
4.1. Analysis of Operation Strategies
4.1.1. Winter
4.1.2. Summer
4.1.3. Performance Comparisons of Operation Strategies
4.2. Energy Consumption
4.3. Sensitivity Analysis of Carbon Taxes and Feed-In Tariffs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ju, L.W.; Tan, Z.F.; Li, H.H.; Tan, Q.K.; Yu, X.B.; Song, X.H. Multi-objective operation optimization and evaluation model for PIES and renewable energy based hybrid energy system driven by distributed energy resources in China. Energy 2016, 111, 322–340. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Mu, H.L.; Li, N.; Ma, B.Y. Optimal design and operation strategy for integrated evaluation of PIES (combined cooling heating and power) system. Energy 2016, 99, 202–220. [Google Scholar] [CrossRef]
- Kang, L.G.; Wu, X.J.; Yuan, X.X.; Ma, K.R.; Wang, Y.Z.; Zhao, J.; An, Q.S. Influence analysis of energy policies on comprehensive performance of PIES system in different buildings. Energy 2021, 233, 121–159. [Google Scholar] [CrossRef]
- Moussawi, H.A.; Fardoun, F.; Louahlia-Gualous, H. Review of tri-generation technologies: Design evaluation, optimization, decision-making, and selection approach. Energy Convers. Manag. 2016, 120, 157–196. [Google Scholar] [CrossRef]
- Mago, P.J.; Fumo, N.; Chamra, L.M. Performance analysis of PIES and CHP systems operating following the thermal and electric load. Int. J. Energy Res. 2009, 33, 852–864. [Google Scholar] [CrossRef]
- Smith, A.D.; Mago, P.J. Effects of load-following operational methods on combined heat and power system efficiency. Appl. Energy 2014, 115, 337–351. [Google Scholar] [CrossRef]
- Mago, P.J.; Chamra, L.M.; Ramsay, J. Micro-combined cooling, heating and power systems hybrid electric-thermal load following operation. Appl. Therm. Eng. 2010, 30, 800–806. [Google Scholar] [CrossRef]
- Zheng, C.Y.; Wu, J.Y.; Zhai, X.Q. A novel operation strategy for PIES systems based on minimum distance. Appl. Energy 2014, 128, 325–335. [Google Scholar] [CrossRef]
- Afzali, S.F.; Mahalec, V. Novel performance curves to determine optimal operation of PIES systems. Appl. Energy 2018, 226, 1009–1036. [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, W.; Hou, Z.; Chen, H.; Xu, G.; Liu, W.; Chen, H.G. Economic dispatch of multi-energy system considering seasonal variation based on hybrid operation strategy. Energy 2022, 238, 121–733. [Google Scholar] [CrossRef]
- Rong, A.; Lahdelma, R. An efficient linear programming model and optimization algorithm for trigeneration. Appl. Energy 2005, 82, 40–63. [Google Scholar] [CrossRef]
- Ren, H.; Gao, W. A MILP model for integrated plan and evaluation of distributed energy systems. Appl. Energy 2010, 87, 1001–1014. [Google Scholar] [CrossRef]
- Li, H.; Nalim, R.; Haldi, P.A. Thermal-economic optimization of a distributed multi-generation energy system—A case study of Beijing. Appl. Therm. Eng. 2006, 26, 709–719. [Google Scholar] [CrossRef]
- Carvalho, M.; Lozano, M.A.; Serra, L.M. Multicriteria synthesis of trigeneration systems considering economic and environmental aspects. Appl. Energy 2012, 91, 245–254. [Google Scholar] [CrossRef]
- Cho, H.; Mago, P.J.; Luck, R.; Chamra, L.M. Evaluation of PIES systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme. Appl. Energy 2009, 86, 2540–2549. [Google Scholar] [CrossRef]
- Abdollahi, G.; Sayyaadi, H. Application of the multi-objective optimization and risk analysis for the sizing of a residential small-scale PIES system. Energy Build. 2013, 60, 330–344. [Google Scholar] [CrossRef]
- Boyaghchi, F.A.; Heidarnejad, P. Thermoeconomic assessment and multi objective optimization of a solar micro PIES based on Organic Rankine Cycle for domestic application. Energy Convers. Manag. 2015, 97, 224–234. [Google Scholar] [CrossRef]
- Qian, J.; Wu, J.; Yao, L.; Mahmut, S.; Zhang, Q. Comprehensive performance evaluation of Wind-Solar-PIES system based on emergy analysis and multi-objective decision method. Energy 2021, 230, 120–779. [Google Scholar] [CrossRef]
- Jia, Z.; Lin, B. Rethinking the choice of carbon tax and carbon trading in China. Technol. Forecast. Soc. 2020, 159, 120–187. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, W.; Yang, Y.; Qian, F. Impacts of Investment Cost, Energy Prices and Carbon Tax on Promoting the Combined Cooling, Heating and Power (PIES) System of an Amusement Park Resort in Shanghai. Energies 2020, 13, 4252. [Google Scholar] [CrossRef]
- Zeng, R.; Zhang, X.; Deng, Y.; Li, H.; Zhang, G. An off-design model to optimize PIES-GSHP system considering carbon tax. Energy Convers. Manag. 2019, 189, 105–117. [Google Scholar] [CrossRef]
- Brink, C.; Vollebergh, H.R.J.; van der Werf, E. Carbon pricing in the EU: Evaluation of different EU ETS reform options. Energy Policy 2016, 97, 603–617. [Google Scholar] [CrossRef] [Green Version]
- Bruno, J.C.; Ortega-López, V.; Coronas, A. Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas: Case study of a sewage treatment plant. Appl. Energy 2009, 86, 837–847. [Google Scholar] [CrossRef]
- Su, B.; Han, W.; Chen, Y.; Wang, Z.; Qu, W.; Jin, H. Performance optimization of a solar assisted PIES based on biogas reforming. Energy Convers. Manag. 2018, 171, 604–617. [Google Scholar] [CrossRef]
- MWM. Available online: https://www.mwm.net/ (accessed on 8 July 2022).
- Gazda, W.; Stanek, W. Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system. Appl. Energy 2016, 169, 138–149. [Google Scholar] [CrossRef]
- Jia, J.; Chen, H.; Liu, H.; Ai, T.; Li, H. Thermodynamic performance analyses for PIES system coupled with organic Rankine cycle and solar thermal utilization under a novel operation strategy. Energy Convers. Manag. 2021, 239, 114212. [Google Scholar] [CrossRef]
- Kalina, J. Integrated biomass gasification combined cycle distributed generation plant with reciprocating gas engine and ORC. Appl. Therm. Eng. 2011, 31, 2829–2840. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Cai, R. Typical off-design analytical performances of internal combustion engine cogeneration. Front. Energy Power Eng. China 2009, 3, 184–192. [Google Scholar] [CrossRef]
- Wang, J.; Sui, J.; Jin, H. An improved operation strategy of combined cooling heating and power system following electrical load. Energy 2015, 85, 654–666. [Google Scholar] [CrossRef]
- Angrisani, G.; Akisawa, A.; Marrasso, E.; Roselli, C.; Sasso, M. Performance assessment of cogeneration and trigeneration systems for small scale applications. Energy Convers. Manag. 2016, 125, 194–208. [Google Scholar] [CrossRef]
- Jiang, R.; Qin, F.G.F.; Yin, H.; Yang, M.; Xu, Y. Thermo-economic assessment and application of PIES system with dehumidification and hybrid refrigeration. Appl. Therm. Eng. 2017, 125, 928–936. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Y.; Zhang, N. Performance analysis of a novel low CO2-emission solar hybrid combined cycle power system. Energy 2017, 128, 152–162. [Google Scholar] [CrossRef]
- Guo, L.; Liu, W.; Cai, J.; Hong, B.; Wang, C. A two-stage optimal planning and design method for combined cooling, heat and power microgrid system. Energy Convers. Manag. 2013, 74, 433–445. [Google Scholar] [CrossRef]
- Wang, J.; Jing, Y.; Zhang, C. Optimization of capacity and operation for PIES system by genetic algorithm. Appl. Energy 2010, 87, 1325–1335. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Z.; Jin, H.; Shi, G.; Fu, C.; Yang, K. Design optimization and analysis of a biomass gasification based BCHP system: A case study in Harbin, China. Renew. Energy 2014, 71, 572–583. [Google Scholar] [CrossRef]
- Petrollese, M.; Cocco, D. Techno-economic assessment of hybrid CSP-biogas power plants. Renew. Energy 2020, 155, 420–431. [Google Scholar] [CrossRef]
- Kulkarni, M.N.K.; Patekar, M.S.; Bhoskar, M.T.; Kulkarni, M.O.; Kakandikar, G.M.; Nandedkar, V.M. Particle Swarm Optimization Applications to Mechanical Engineering- A Review. Mater. Today Proc. 2015, 2, 2631–2639. [Google Scholar] [CrossRef]
- Mehr, A.S.; Gandiglio, M.; MosayebNezhad, M.; Lanzini, A.; Mahmoudi, S.M.S.; Yari, M.; Santarelli, M. Solar-assisted integrated biogas solid oxide fuel cell (SOFC) installation in wastewater treatment plant: Energy and economic analysis. Appl. Energy 2017, 191, 620–638. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Y.; Dai, Y.J.; Wang, R.Z. Design and analysis of a biogas production system utilizing residual energy for a hybrid CSP and biogas power plant. Appl. Therm. Eng. 2016, 109, 423–431. [Google Scholar] [CrossRef]
- Chomać-Pierzecka, E.; Kokiel, A.; Rogozińska-Mitrut, J.; Sobczak, A.; Soboń, D.; Stasiak, J. Analysis and Evaluation of the Photovoltaic Market in Poland and the Baltic States. Energies 2022, 15, 669. [Google Scholar] [CrossRef]
- Neacșa, A.; Panait, M.; Mureșan, J.D.; Voica, M.C.; Manta, O. The Energy Transition between Desideratum and Challenge: Are Cogeneration and Trigeneration the Best Solution? Int. J. Environ. Res. Public Health 2022, 19, 3039. [Google Scholar] [CrossRef] [PubMed]
- Sobczak, A.; Chomać-Pierzecka, E.; Kokiel, A.; Różycka, M.; Stasiak, J.; Soboń, D. Economic Conditions of Using Biodegradable Waste for Biogas Production, Using the Example of Poland and Germany. Energies 2022, 15, 5239. [Google Scholar] [CrossRef]
Items | First Digester | Second Digester | Unit |
---|---|---|---|
Temperature | 308.15 | 323.15 | K |
Wall area | 760 | 380 | m2 |
Roof area | 387 | 193 | m2 |
Base area | 400 | 200 | m2 |
Wall HTC | 1.53 | 1.53 | W/m2K |
Roof HTC | 3.31 | 3.31 | W/m2K |
Base HTC | 0.63 | 0.63 | W/m2K |
Component | Variable | Symbol | Value |
---|---|---|---|
Gas boiler | Efficiency | 0.8 | |
Electric chiller | COP | COPEC | 4 |
Absorption chiller | COP | COPAC | 1.2 |
Heat recovery system | Efficiency | 0.73 | |
Heat exchanger | Efficiency | 0.8 | |
Natural gas | CO2 conversion factor (g/kWh) | 220 | |
Electricity | CO2 conversion factor (g/kWh) | 968 |
Component | Initial Investment Cost |
---|---|
ICE (USD/kW) | 1290 |
GB (USD/kW) | 48 |
Biogas system (USD/m3) | 520 |
Biogas storage (USD/m3) | 46 |
PV system (USD/kW) | 460 |
AC (USD/kW) | 200 |
EC (USD/kW) | 140 |
WH (USD/kW) | 118 |
HE (USD/kW) | 30 |
Equipment | Unit | CDS | EDS | TDS |
---|---|---|---|---|
ICE | kW | 566 | 580 | 700 |
PV | kW | 240 | 240 | 240 |
Gas-fired boiler | kW | 1032 | 709 | 368 |
Electric chiller | kW | 108 | 109 | 42 |
Absorption chiller | kW | 64 | 53 | 363 |
Heat recovery system | kW | 849 | 869 | 1050 |
Heat exchanger | kW | 1134 | 1134 | 1134 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Chen, Y.; Xu, G.; Chen, H. Economic Assessment of Operation Strategies on Park-Level Integrated Energy System Coupled with Biogas: A Case Study in a Sewage Treatment Plant. Energies 2023, 16, 80. https://doi.org/10.3390/en16010080
Zhao X, Chen Y, Xu G, Chen H. Economic Assessment of Operation Strategies on Park-Level Integrated Energy System Coupled with Biogas: A Case Study in a Sewage Treatment Plant. Energies. 2023; 16(1):80. https://doi.org/10.3390/en16010080
Chicago/Turabian StyleZhao, Xin, Yanqi Chen, Gang Xu, and Heng Chen. 2023. "Economic Assessment of Operation Strategies on Park-Level Integrated Energy System Coupled with Biogas: A Case Study in a Sewage Treatment Plant" Energies 16, no. 1: 80. https://doi.org/10.3390/en16010080
APA StyleZhao, X., Chen, Y., Xu, G., & Chen, H. (2023). Economic Assessment of Operation Strategies on Park-Level Integrated Energy System Coupled with Biogas: A Case Study in a Sewage Treatment Plant. Energies, 16(1), 80. https://doi.org/10.3390/en16010080