Optimization and Improvement of Sodium Heated Once-through Steam Generator Transient Analysis Code Based on the JFNK Algorithm
Abstract
1. Introduction
2. Mathematical and Physical Model
2.1. SG Model
2.2. JFNK Algorithm Model
2.3. JFNK Algorithm Logic
2.4. TCOSS Code Logic
3. Benchmark Verification
3.1. B1-B Transient
3.2. ETEC Shutdown Experiment
4. Transient Experiment Verification
4.1. Experimental Introduction
4.2. Multi-Parameter Change Transient
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sun, Z. Nuclear Power Plant; Harbin Engineering University Press: Harbin, China, 2004. [Google Scholar]
- Qiu, S.; Su, G.; Tian, W. Advanced Nuclear Power Plant Structure and Power Equipment; China Atomic Energy Press: Beijing, China, 2015; Volumes 204–205. [Google Scholar]
- Vaidyanathan, G.; Kothandaraman, A.; Kumar, L.S.; Vinod, V.; Noushad, I.; Rajan, K.; Kalyanasundaram, P. Development of one-dimensional computer code DESOPT for thermal hydraulic design of sodium-heated once through steam generators. Int. J. Nucl. Energy Sci. Technol. 2010, 5, 143–161. [Google Scholar] [CrossRef]
- Yoon, J.; Kim, J.-P.; Kim, H.-Y.; Lee, D.J.; Chang, M.H. Development of a Computer Code, ONCESG, for the Thermal-Hydraulic Design of a Once-Through Steam Generator. J. Nucl. Sci. Technol. 2000, 37, 445–454. [Google Scholar] [CrossRef]
- Tzanos, C.P. A movable boundary model for once-through steam generator analysis. Nucl. Technol. 1988, 82, 5–17. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, D.; Tian, W.; Qiu, S.; Su, G. Thermal-hydraulic analysis code development for sodium heated once-through steam generator. Ann. Nucl. Energy 2019, 127, 385–394. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, D.; Tian, W.; Qiu, S.; Su, G. Development of thermal hydraulic design code for SFR steam generators. Nucl. Eng. Des. 2019, 348, 46–55. [Google Scholar] [CrossRef]
- Xu, R.; Song, P.; Zhang, D.; Tian, W.; Qiu, S.; Su, G.H. Numerical analysis on flow instability of parallel channels in steam generator for sodium-cooled fast reactor. Int. J. Energy Res. 2021, 45, 11943–11956. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, D.; Xu, R.; Min, X.; Wang, S.; Wang, B.; Wang, C.; Tian, W.; Qiu, S.; Su, G. Start-up characteristics for the test facility of a prototype sodium heated OTSG. Nucl. Eng. Des. 2021, 378, 111154. [Google Scholar] [CrossRef]
- Brown, P.N.; Saad, Y. Hybrid Krylov Methods for Nonlinear Systems of Equations. SIAM J. Sci. Stat. Comput. 1990, 11, 450–481. [Google Scholar] [CrossRef]
- Kelley, C. Iterative Methods for Linear and Nonlinear Equations; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1995. [Google Scholar] [CrossRef]
- van der Vorst, H.A. Iterative Krylov Methods for Large Linear Systems, 1st ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Min, X.; Zhang, D.; Xu, R.; Wang, S.; Chen, Y.; Wang, C.; Tian, W.; Qiu, S.; Su, G. Study on startup characteristics of prototype once-through steam generator for China fast reactor. Int. J. Adv. Nucl. React. Des. Technol. 2022, 4, 26–35. [Google Scholar] [CrossRef]
- Eisenstat, S.C.; Walker, H.F. Globally Convergent Inexact Newton Methods. SIAM J. Optim. 1994, 4, 393–422. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.; Li, X. Efficient Solution and Parallel Computation of Sparse Linear Equations; Hunan Science and Technology Press: Changsha, China, 2004. [Google Scholar]
- Saad, Y.; Schultz, M.H. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef]
- McHugh, P.R.; Knoll, D.A. Comparison of standard and matrix-free implementations of several Newton-Krylov solvers. AIAA J. 1994, 32, 2394–2400. [Google Scholar] [CrossRef]
- Knoll, D.; Keyes, D. Jacobian-free Newton–Krylov methods: A survey of approaches and applications. J. Comput. Phys. 2004, 193, 357–397. [Google Scholar] [CrossRef]
- Pernice, M.; Walker, H.F. NITSOL: A Newton Iterative Solver for Nonlinear Systems. SIAM J. Sci. Comput. 1998, 19, 302–318. [Google Scholar] [CrossRef]
- Gu, T.; An, H.; Liu, X.; Xu, X. Iterative Methods and Preprocessing Techniques; Science Press: Beijing, China, 2015. [Google Scholar]
- Berry, G. Model of a Once-Through Steam Generator with Moving Boundaries and a Variable Number of Nodes; 83-WA/HT-19; American Society of Mechanical Engineers (Paper): New York, NY, USA, 1983. [Google Scholar]
Structural Parameters | Design Value |
---|---|
Tube length/m | 17.7 |
Outer tube diameter/m | 0.016 |
Inner tube diameter/m | 0.011 |
Tube pitch/m | 0.033 |
Tube number | 7 |
Number | Sodium Mass Flowrate /m3∙h−1 | Feedwater Mass Flowrate /kg∙s−1 | Inlet Sodium Temperature /°C | Outlet Steam Pressure /MPa | Feedwater Temperature /°C | Note |
---|---|---|---|---|---|---|
1 | 22.64 | 0.586 | 457 | 14.4 | 210 | Inlet sodium temperature decreased |
2 | 22.64 | 0.586 | 467 | 14.4 | 210 | Inlet sodium temperature increased |
3 | 22.64 | 0.586 | 467 | 14.4 | 190 | Feedwater temperature decreased |
Case | CPU Time/s | Speed Ratio | |
---|---|---|---|
Gear Algorithm | JFNK Algorithm | ||
B1-B transient benchmark | 19,558 | 1100 | 17.78 |
ETEC shutdown experiment | 225,185 | 14,500 | 15.53 |
Transient experiment of evaporator seven-tube prototype | 17,019 | 3583 | 4.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Feng, Z.; Chen, Y.; Zhang, D.; Wu, Z.; Li, J.; Li, M.; Ma, R.; Li, C. Optimization and Improvement of Sodium Heated Once-through Steam Generator Transient Analysis Code Based on the JFNK Algorithm. Energies 2023, 16, 482. https://doi.org/10.3390/en16010482
Wang B, Feng Z, Chen Y, Zhang D, Wu Z, Li J, Li M, Ma R, Li C. Optimization and Improvement of Sodium Heated Once-through Steam Generator Transient Analysis Code Based on the JFNK Algorithm. Energies. 2023; 16(1):482. https://doi.org/10.3390/en16010482
Chicago/Turabian StyleWang, Bo, Zhenyu Feng, Youchun Chen, Dalin Zhang, Zhiguang Wu, Jun Li, Mingyang Li, Ruoxin Ma, and Chao Li. 2023. "Optimization and Improvement of Sodium Heated Once-through Steam Generator Transient Analysis Code Based on the JFNK Algorithm" Energies 16, no. 1: 482. https://doi.org/10.3390/en16010482
APA StyleWang, B., Feng, Z., Chen, Y., Zhang, D., Wu, Z., Li, J., Li, M., Ma, R., & Li, C. (2023). Optimization and Improvement of Sodium Heated Once-through Steam Generator Transient Analysis Code Based on the JFNK Algorithm. Energies, 16(1), 482. https://doi.org/10.3390/en16010482