Effect of Environmental Factors on Photovoltaic Soiling: Experimental and Statistical Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location Description
2.2. Environmental Parameters
2.3. Measurement of Transmittance
2.4. Linear Regression Model
2.5. Statistical Analysis
3. Results
3.1. Transmittance Loss
3.2. Statistical F-Test and t-Test Analysis
3.3. Correlation between the Transmittance and the Environmental Parameters
3.4. Seasonal Analysis Using Multi-Variable Linear Regression (MLR)
3.5. Cleaning Cycle and Seasonal Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Energy Agency; International Renewable Energy Agency; United Nations Statistics Division; World Bank; World Health Organization. Tracking SDG 7: The Energy Progress Report 2021; World Bank: Washington, DC, USA, 2021. [Google Scholar]
- International Energy Agency. Task 1 Strategic PV Analysis and Outreach-2020 Snapshot of Global PV Markets; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Ali, A.; Irshad, K.; Khan, M.F.; Hossain, M.M.; Al-Duais, I.N.; Malik, M.Z. Artificial intelligence and bio-inspired soft computing-based maximum power plant tracking for a solar photovoltaic system under non-uniform solar irradiance shading conditions—A review. Sustainability 2021, 13, 10575. [Google Scholar] [CrossRef]
- Maghami, M.R.; Hizam, H.; Gomes, C.; Radzi, M.A.; Rezadad, M.I.; Hajighorbani, S. Power loss due to soiling on solar panel: A review. Renew. Sustain. Energy Rev. 2016, 59, 1307–1316. [Google Scholar] [CrossRef] [Green Version]
- Laarabi, B.; El Baqqal, Y.; Dahrouch, A.; Barhdadi, A. Deep analysis of soiling effect on glass transmittance of PV modules in seven sites in Morocco. Energy 2020, 213, 118811. [Google Scholar] [CrossRef]
- El-Nashar, A.M. The effect of dust accumulation on the performance of evacuated tube collectors. Sol. Energy 1994, 53, 105–115. [Google Scholar] [CrossRef]
- Chanchangi, Y.N.; Ghosh, A.; Baig, H.; Sundaram, S.; Mallick, T.K. Soiling on PV performance influenced by weather parameters in Northern Nigeria. Renew. Energy 2021, 180, 874–892. [Google Scholar] [CrossRef]
- Olivares, D.; Ferrada, P.; Bijman, J.; Rodríguez, S.; Trigo-González, M.; Marzo, A.; Rabanal-Arabach, J.; Alonso-Montesinos, J.; Batlles, F.J.; Fuentealba, E. Determination of the soiling impact on photovoltaic modules at the coastal area of the Atacama Desert. Energies 2020, 13, 3819. [Google Scholar] [CrossRef]
- Al Shehri, A.; Parrott, B.; Carrasco, P.; Al Saiari, H.; Taie, I. Impact of dust deposition and brush-based dry cleaning on glass transmittance for PV modules applications. Sol. Energy 2016, 135, 317–324. [Google Scholar] [CrossRef]
- Boyle, L.; Flinchpaugh, H.; Hannigan, M. Natural soiling of photovoltaic cover plates and the impact on transmission. Renew. Energy 2015, 77, 166–173. [Google Scholar] [CrossRef]
- Mithhu, M.M.H.; Rima, T.A.; Khan, M.R. Global analysis of optimal cleaning cycle and profit of soiling affected solar panels. Appl. Energy 2021, 285, 116436. [Google Scholar] [CrossRef]
- Yadav, S.K.; Kumar, N.M.; Ghosh, A.; Bajpai, U.; Chopra, S.S. Assessment of soiling impacts and cleaning frequencies of a rooftop BAPV system in composite climates of India. Sol. Energy 2022, 242, 119–129. [Google Scholar] [CrossRef]
- Picotti, G.; Borghesani, P.; Cholette, M.; Manzolini, G. Soiling of solar collectors—Modelling approaches for airborne dust and its interactions with surfaces. Renew. Sustain. Energy Rev. 2018, 81, 2343–2357. [Google Scholar] [CrossRef]
- Costa, S.C.; Diniz, A.S.A.; Kazmerski, L.L. Solar energy dust and soiling R&D progress: Literature review update for 2016. Renew. Sustain. Energy Rev. 2018, 82, 2504–2536. [Google Scholar]
- Khan, M.A.; Islam, N.; Khan, M.A.M.; Irshad, K.; Hanzala, M.; Pasha, A.A.; Mursaleen, M. Experimental and simulation analysis of grid-connected rooftop photovoltaic system for a large-scale facility. Sustain. Energy Technol. Assess. 2022, 53, 102773. [Google Scholar] [CrossRef]
- Micheli, L.; Deceglie, M.G. Predicting Future Soiling Losses Using Environmental Data; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2018. [Google Scholar]
- Figgis, B.; Ennaoui, A.; Guo, B.; Javed, W.; Chen, E. Outdoor soiling microscope for measuring particle deposition and resuspension. Sol. Energy 2016, 137, 158–164. [Google Scholar] [CrossRef]
- El-Nashar, A.M. Effect of dust deposition on the performance of a solar desalination plant operating in an arid desert area. Sol. Energy 2003, 75, 421–431. [Google Scholar] [CrossRef]
- Tanesab, J.; Parlevliet, D.; Whale, J.; Urmee, T. Seasonal effect of dust on the degradation of PV modules performance deployed in different climate areas. Renew. Energy 2017, 111, 105–115. [Google Scholar] [CrossRef]
- Javed, W.; Guo, B.; Figgis, B.; Pomares, L.M.; Aïssa, B. Multi-year field assessment of seasonal variability of photovoltaic soiling and environmental factors in a desert environment. Sol. Energy 2020, 211, 1392–1402. [Google Scholar] [CrossRef]
- Coello, M.; Boyle, L. Simple Model For Predicting Time Series Soiling of Photovoltaic Panels. IEEE J. Photovolt. 2019, 9, 1382–1387. [Google Scholar] [CrossRef]
- Javed, W.; Guo, B.; Figgis, B. Modeling of photovoltaic soiling loss as a function of environmental variables. Sol. Energy 2017, 157, 397–407. [Google Scholar] [CrossRef]
- Hossain, M.I.; Ali, A.; Bermudez Benito, V.; Figgis, B.; Aïssa, B. Anti-Soiling Coatings for Enhancement of PV Panel Performance in Desert Environment: A Critical Review and Market Overview. Materials 2022, 15, 7139. [Google Scholar] [CrossRef]
- Abraim, M.; Salihi, M.; El Alani, O.; Hanrieder, N.; Ghennioui, H.; Ghennioui, A.; El Ydrissi, M.; Azouzoute, A. Techno-economic assessment of soiling losses in CSP and PV solar power plants: A case study for the semi-arid climate of Morocco. Energy Convers. Manag. 2022, 270, 116285. [Google Scholar] [CrossRef]
- Abdallah, R.; Juaidi, A.; Abdel-Fattah, S.; Qadi, M.; Shadid, M.; Albatayneh, A.; Çamur, H.; García-Cruz, A.; Manzano-Agugliaro, F. The Effects of Soiling and Frequency of Optimal Cleaning of PV Panels in Palestine. Energies 2022, 15, 4232. [Google Scholar] [CrossRef]
- Kimber, A.; Mitchell, L.; Nogradi, S.; Wenger, H. The effect of soiling on large grid-connected photovoltaic systems in California and the southwest region of the United States. In Proceedings of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI, USA, 7–12 May 2006; IEEE: New York, NY, USA, 2006; pp. 2391–2395. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Rao, Y.P. The climate of the Indian subcontinent. In World Survey of Climatology; Takahasi, K., Arakawa, H., Eds.; Elsevier: Amsterdam, The Netherlands, 1981; Volume 9, pp. 67–182. [Google Scholar]
- Jain, S.; Kumar, V.; Saharia, M. Analysis of rainfall and temperature trends in northeast India. Int. J. Climatol. 2013, 33, 968–978. [Google Scholar] [CrossRef]
- Ilse, K.; Figgis, B.; Khan, M.Z.; Naumann, V.; Hagendorf, C. Dew as a detrimental influencing factor for soiling of PV modules. IEEE J. Photovolt. 2018, 9, 287–294. [Google Scholar] [CrossRef]
- Figgis, B.; Nouviaire, A.; Wubulikasimu, Y.; Javed, W.; Guo, B.; Ait-Mokhtar, A.; Belarbi, R.; Ahzi, S.; Rémond, Y.; Ennaoui, A. Investigation of factors affecting condensation on soiled PV modules. Sol. Energy 2018, 159, 488–500. [Google Scholar] [CrossRef]
- Garg, H. Effect of dirt on transparent covers in flat-plate solar energy collectors. Sol. Energy 1974, 15, 299–302. [Google Scholar] [CrossRef]
- Smestad, G.P.; Germer, T.A.; Alrashidi, H.; Fernández, E.F.; Dey, S.; Brahma, H.; Sarmah, N.; Ghosh, A.; Sellami, N.; Hassan, I.A.; et al. Modelling photovoltaic soiling losses through optical characterization. Sci. Rep. 2020, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Burton, P.D.; Boyle, L.; Griego, J.J.; King, B.H. Quantification of a minimum detectable soiling level to affect photovoltaic devices by natural and simulated soils. IEEE J. Photovolt. 2015, 5, 1143–1149. [Google Scholar] [CrossRef]
- Boyle, L.; Flinchpaugh, H.; Hannigan, M. Assessment of PM dry deposition on solar energy harvesting systems: Measurement–model comparison. Aerosol Sci. Technol. 2016, 50, 380–391. [Google Scholar] [CrossRef] [Green Version]
- Conceicao, R.; Silva, H.G.; Mirao, J.; Gostein, M.; Fialho, L.; Narvarte, L.; Collares-Pereira, M. Saharan dust transport to Europe and its impact on photovoltaic performance: A case study of soiling in Portugal. Sol. Energy 2018, 160, 94–102. [Google Scholar] [CrossRef]
- Nayshevsky, I.; Xu, Q.; Lyons, A.M. Hydrophobic–hydrophilic surfaces exhibiting dropwise condensation for anti-soiling applications. IEEE J. Photovolt. 2018, 9, 302–307. [Google Scholar] [CrossRef]
- Korevaar, M.; Mes, J.; Merrouni, A.A.; Bergmans, T.; Van Mechelen, X. Unique Soiling Detection System for PV Modules. In Proceedings of the 35th European PV Solar Energy Conference and Exhibition, Brussels, Belgium, 24–28 September 2018; p. 1988e90. [Google Scholar]
- Aïssa, B.; Scabbia, G.; Figgis, B.W.; Lopez, J.G.; Benito, V.B. PV-soiling field-assessment of Mars™ optical sensor operating in the harsh desert environment of the state of Qatar. Sol. Energy 2022, 239, 139–146. [Google Scholar] [CrossRef]
- World Meteorological Organisation. Commission for Instruments and Methods of Observation (CIMO-VIII), 8th ed.; World Meteorological Organisation, Ed.; Secretariat of the World Meteorological Organisation: Geneva, Switzerland, 1982. [Google Scholar]
- IEC 61724-1; Photovoltaic system performance—Part 1: Monitoring; Edition 1.0, 2017–03. International Electrotechnical Commission: Geneva, Switzerland, 2017.
- Fernández-Solas, Á.; Micheli, L.; Almonacid, F.; Fernández, E.F. Indoor validation of a multiwavelength measurement approach to estimate soiling losses in photovoltaic modules. Sol. Energy 2022, 241, 584–591. [Google Scholar] [CrossRef]
- ASTM-G173-03; Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. ASTM International: West Conshohocken, PA, USA, 2003.
- Mangiafico, S.S. Summary and Analysis of Extension Program Evaluation in R; Rutgers Cooperative Extension: New Brunswick, NJ, USA, 2016. [Google Scholar]
- Saud, S.; Jamil, B.; Upadhyay, Y.; Irshad, K. Performance improvement of empirical models for estimation of global solar radiation in India: A k-fold cross-validation approach. Sustain. Energy Technol. Assess. 2020, 40, 100768. [Google Scholar] [CrossRef]
- Isaifan, R.J.; Johnson, D.; Ackermann, L.; Figgis, B.; Ayoub, M. Evaluation of the adhesion forces between dust particles and photovoltaic module surfaces. Sol. Energy Mater. Sol. Cells 2019, 191, 413–421. [Google Scholar] [CrossRef]
- Micheli, L.; Deceglie, M.G.; Muller, M. Predicting photovoltaic soiling losses using environmental parameters: An update. Prog. Photovolt. Res. Appl. 2019, 27, 210–219. [Google Scholar] [CrossRef]
- Sayyah, A.; Horenstein, M.N.; Mazumder, M.K. Energy yield loss caused by dust deposition on photovoltaic panels. Sol. Energy 2014, 107, 576–604. [Google Scholar] [CrossRef]
- Mani, M.; Pillai, R. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renew. Sustain. Energy Rev. 2010, 14, 3124–3131. [Google Scholar] [CrossRef]
- Goossens, D.; Van Kerschaever, E. Aeolian dust deposition on photovoltaic solar cells: The effects of wind velocity and airborne dust concentration on cell performance. Sol. Energy 1999, 66, 277–289. [Google Scholar] [CrossRef]
- Ministry of Mines. Minerals blocks on auction in 2018-19. In 4th National Conclave on Mines and Minerals 2018; Government of Assam: Indore, India, 2018. [Google Scholar]
- Indian Bureau of Mines. Indian Minerals Yearbook 2015 (Part I) State Reviews (Assam), 54th ed.; Ministry of Mines, G.o.I., Ed.; Indian Bureau of Mines: Nagpur, India, 2017. [Google Scholar]
- Khare, P.; Baruah, B.P. Elemental characterization and source identification of PM2.5 using multivariate analysis at the suburban site of North-East India. Atmos. Res. 2010, 98, 148–162. [Google Scholar] [CrossRef]
- Bhuyan, P.; Deka, P.; Prakash, A.; Balachandran, S.; Hoque, R.R. Chemical characterization and source apportionment of aerosol over mid Brahmaputra Valley, India. Environ. Pollut. 2018, 234, 997–1010. [Google Scholar] [CrossRef] [PubMed]
- Said, S.A.; Walwil, H.M. Fundamental studies on dust fouling effects on PV module performance. Solar Energy 2014, 107, 328–337. [Google Scholar] [CrossRef]
- El-Shobokshy, M.; Mujahid, A.; Zakzouk, A. Effects of dust on the performance of concentrator photovoltaic cells. IEE Proc. I (Solid-State Electron Devices) 1985, 132, 5–8. [Google Scholar] [CrossRef]
- Meyer, V.R. Measurement uncertainty. J. Chromatogr. A 2007, 1158, 15–24. [Google Scholar] [CrossRef] [PubMed]
Season | G2 | G3 | G4 | ||||||
---|---|---|---|---|---|---|---|---|---|
Avg [%] | Uncertainty [%] | SD [%] | Avg [%] | Uncertainty [%] | SD [%] | Avg [%] | Uncertainty [%] | SD [%] | |
Pre-monsoon | 8.5 | ±1.8 | ±5.3 | 9.6 | ±1.9 | ±6.2 | 14.5 | ±2.7 | ±6.9 |
SW monsoon | 3.4 | ±0.9 | ±2.2 | 5.8 | ±0.9 | ±3.1 | 6.6 | ±0.8 | ±2.3 |
Post-monsoon | 11.9 | ±2.2 | ±8.3 | 15.1 | ±2.3 | ±6.2 | 17.5 | ±3.4 | ±8.8 |
Winter | 16.6 | ±3.1 | ±7.2 | 18.4 | ±3.3 | ±9.1 | 24.4 | ±0.7 | ±8.3 |
Annually | 7.9 | ±2.0 | ±5.8 | 10 | ±2.1 | ±6.1 | 13 | ±1.9 | ±6.6 |
Season | Combination of Glass Coupons | |||||
---|---|---|---|---|---|---|
G2–G3 | G2–G4 | G3–G4 | ||||
F-Test | t-Test | F-Test | t-Test | F-Test | t-Test | |
Pre-monsoon | x | x | x | ✓ | x | x |
SW monsoon | x | ✓ | x | ✓ | x | x |
Post-monsoon | x | x | x | x | x | x |
Winter | x | x | x | x | x | x |
1 Year | x | x | x | ✓ | x | x |
Non-monsoon | x | x | x | ✓ | x | x |
High-soiling | x | x | x | ✓ | x | x |
Low-soiling | x | ✓ | ✓ | ✓ | ✓ | x |
Season | Input Environmental Parameters | MSE (%) | RMSE (%) | R2 | Standard Error | Relation |
---|---|---|---|---|---|---|
Pre-monsoon | Rf and Ws Rain and PM10 | 0.08 0.08 | 2.78 2.90 | 0.70 0.67 | 0.03 0.03 | τr = 0.019 Rf − 0.12 Ws + 1.02 τr = 0.0085 Rain − 0.00066 PM10 + 0.95 |
Post-monsoon | Rf Ws | 0.11 0.07 | 3.31 2.66 | 0.81 0.88 | 0.04 0.03 | τr = 0.083 Rf + 0.81 τr = 0.33 Ws + 0.53 |
Winter | Rain and Ws Rmax and Ws | 0.01 0.01 | 1.17 1.15 | 0.97 0.97 | 0.02 0.02 | τr = 0.087 Rain + 0.82 Ws + 0.11 τr = 0.015 Rmax + 0.82 Ws + 0.11 |
1-year | Rf and Tamb | 0.22 | 4.63 | 0.53 | 0.05 | τr = 0.0043 Rf + 0.010 Tamb + 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brahma, H.; Pant, S.; Micheli, L.; Smestad, G.P.; Sarmah, N. Effect of Environmental Factors on Photovoltaic Soiling: Experimental and Statistical Analysis. Energies 2023, 16, 45. https://doi.org/10.3390/en16010045
Brahma H, Pant S, Micheli L, Smestad GP, Sarmah N. Effect of Environmental Factors on Photovoltaic Soiling: Experimental and Statistical Analysis. Energies. 2023; 16(1):45. https://doi.org/10.3390/en16010045
Chicago/Turabian StyleBrahma, Honey, Shraiya Pant, Leonardo Micheli, Greg P. Smestad, and Nabin Sarmah. 2023. "Effect of Environmental Factors on Photovoltaic Soiling: Experimental and Statistical Analysis" Energies 16, no. 1: 45. https://doi.org/10.3390/en16010045
APA StyleBrahma, H., Pant, S., Micheli, L., Smestad, G. P., & Sarmah, N. (2023). Effect of Environmental Factors on Photovoltaic Soiling: Experimental and Statistical Analysis. Energies, 16(1), 45. https://doi.org/10.3390/en16010045