A Review on Thermal Coupling of Metal Hydride Storage Tanks with Fuel Cells and Electrolyzers
Abstract
:1. Introduction
2. Review Methodology
3. Heat Transfer during Charging and Discharging Processes
3.1. Reaction Kinetics of Metal Hydride
3.2. Thermodynamics of Metal Hydride
3.3. Mass and Energy Balance Equations
4. Methods for Thermal Management of MHs
4.1. Passive Thermal Management
4.2. Active Thermal Management
5. Thermal Coupling of MH Tanks and PEM Fuel Cell during the Discharge Process
6. Thermal Management of MH Tanks in Integrated Fuel Cell and Electrolyzer Systems
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The Paris Agreement n.d. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 24 October 2022).
- Woodfield, P.L.; Monde, M.; Takano, T. Heat Transfer Characteristics for Practical Hydrogen Pressure Vessels Being Filled at High Pressure. J. Therm. Sci. Technol. 2008, 3, 241–253. [Google Scholar] [CrossRef] [Green Version]
- Aceves, S.M.; Espinosa-Loza, F.; Ledesma-Orozco, E.; Ross, T.O.; Weisberg, A.H.; Brunner, T.C.; Kircher, O. High-density automotive hydrogen storage with cryogenic capable pressure vessels. Int. J. Hydrogen Energy 2010, 35, 1219–1226. [Google Scholar] [CrossRef]
- Ahluwalia, R.K.; Peng, J.K. Dynamics of cryogenic hydrogen storage in insulated pressure vessels for automotive applications. Int. J. Hydrogen Energy 2008, 33, 4622–4633. [Google Scholar] [CrossRef]
- Ahluwalia, R. Sodium alanate hydrogen storage system for automotive fuel cells. Int. J. Hydrogen Energy 2007, 32, 1251–1261. [Google Scholar] [CrossRef]
- Raju, M.; Kumar, S. System simulation modeling and heat transfer in sodium alanate based hydrogen storage systems. Int. J. Hydrogen Energy 2011, 36, 1578–1591. [Google Scholar] [CrossRef]
- Lozano, G.A.; Eigen, N.; Keller, C.; Dornheim, M.; Bormann, R. Effects of heat transfer on the sorption kinetics of complex hydride reacting systems. Int. J. Hydrogen Energy 2009, 34, 1896–1903. [Google Scholar] [CrossRef]
- Raju, M.; Kumar, S. Optimization of heat exchanger designs in metal hydride based hydrogen storage systems. Int. J. Hydrogen Energy 2012, 37, 2767–2778. [Google Scholar] [CrossRef]
- Ahluwalia, R.K.; Peng, J.K. Automotive hydrogen storage system using cryo-adsorption on activated carbon. Int. J. Hydrogen Energy 2009, 34, 5476–5487. [Google Scholar] [CrossRef]
- Kumar, S.; Raju, M.; Senthil Kumar, V. System simulation models for on-board hydrogen storage systems. Int. J. Hydrogen Energy 2012, 37, 2862–2873. [Google Scholar] [CrossRef]
- Bénard, P.; Chahine, R. Modeling of adsorption storage of hydrogen on activated carbons. Int. J. Non-Linear Mech. 2001, 36, 849–855. [Google Scholar] [CrossRef]
- Ley, M.; Meggouh, M.; Moury, R.; Peinecke, K.; Felderhoff, M. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides. Materials 2015, 8, 5891–5921. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.A.; Jorgensen, S.W.; Dedrick, D.E. Performance of a full-scale hydrogen-storage tank based on complex hydrides. Faraday Discuss 2011, 151, 327. [Google Scholar] [CrossRef] [PubMed]
- Galli, S.; De Francesco, M.; Monteleone, G.; Oronzio, R.; Pozio, A. Development of a compact hydrogen generator from sodium borohydride. Int. J. Hydrogen Energy 2010, 35, 7344–7349. [Google Scholar] [CrossRef]
- Valenti, G. Hydrogen liquefaction and liquid hydrogen storage. In Compendium of Hydrogen Energy; Elsevier: Cambridge, UK, 2016; pp. 27–51. [Google Scholar] [CrossRef]
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Da Rosa, A.V.; Ordóñez, J.C. Fundamentals of Renewable Energy Processes, 4th ed.; Birtcher, K., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 478–494. [Google Scholar]
- Zhu, Z.; Bao, Z.; Wu, D. Optimization of the content distribution of expanded natural graphite in a multilayer metal hydride bed for thermochemical heat storage. Appl. Therm. Eng. 2022, 216, 119115. [Google Scholar] [CrossRef]
- Minko, K.B.; Artemov, V.I.; Yan’kov, G.G. Numerical study of hydrogen purification using metal hydride reactor with aluminium foam. Appl. Therm. Eng. 2015, 76, 175–184. [Google Scholar] [CrossRef]
- ASskri, F.; Bensalah, M.; Jemni, A.; Bennasrallah, S. Optimization of hydrogen storage in metal-hydride tanks. Int. J. Hydrogen Energy 2009, 34, 897–905. [Google Scholar] [CrossRef]
- Tong, L.; Xiao, J.; Yang, T.; Bénard, P.; Chahine, R. Complete and reduced models for metal hydride reactor with coiled-tube heat exchanger. Int. J. Hydrogen Energy 2019, 44, 15907–15916. [Google Scholar] [CrossRef]
- Busqué, R.; Torres, R.; Grau, J.; Roda, V.; Husar, A. Effect of metal hydride properties in hydrogen absorption through 2D-axisymmetric modeling and experimental testing in storage canisters. Int. J. Hydrogen Energy 2017, 42, 19114–19125. [Google Scholar] [CrossRef]
- Urunkar, R.U.; Patil, S.D. Enhancement of heat and mass transfer characteristics of metal hydride reactor for hydrogen storage using various nanofluids. Int. J. Hydrogen Energy 2021, 46, 19486–19497. [Google Scholar] [CrossRef]
- Colpan, C.O.; Nalbant, Y.; Ercelik, M. 4.28 Fundamentals of Fuel Cell Technologies. Compr. Energy Syst. 2018, 4, 1107–1130. [Google Scholar] [CrossRef]
- MacDonald, B.D.; Rowe, A.M. A thermally coupled metal hydride hydrogen storage and fuel cell system. J. Power Sources 2006, 161, 346–355. [Google Scholar] [CrossRef]
- Omrani, R.; Nguyen, H.Q.; Shabani, B. Thermal coupling of an open-cathode proton exchange membrane fuel cell with metal hydride canisters: An experimental study. Int. J. Hydrogen Energy 2020, 45, 28940–28950. [Google Scholar] [CrossRef]
- Zhu, D.; Ait-Amirat, Y.; N’Diaye, A.; Djerdir, A. Active thermal management between proton exchange membrane fuel cell and metal hydride hydrogen storage tank considering long-term operation. Energy Convers. Manag. 2019, 202, 112187. [Google Scholar] [CrossRef]
- Tetuko, A.P.; Shabani, B.; Andrews, J. Thermal coupling of PEM fuel cell and metal hydride hydrogen storage using heat pipes. Int. J. Hydrogen Energy 2016, 41, 4264–4277. [Google Scholar] [CrossRef]
- Tetuko, A.P.; Shabani, B.; Omrani, R.; Paul, B.; Andrews, J. Study of a thermal bridging approach using heat pipes for simultaneous fuel cell cooling and metal hydride hydrogen discharge rate enhancement. J Power Sources 2018, 397, 177–188. [Google Scholar] [CrossRef]
- Eveloy, V.; Gebreegziabher, T. A Review of Projected Power-to-Gas Deployment Scenarios. Energies 2018, 11, 1824. [Google Scholar] [CrossRef] [Green Version]
- Kharel, S.; Shabani, B. Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables. Energies 2018, 11, 2825. [Google Scholar] [CrossRef] [Green Version]
- Tiktak, W.J. Heat Management of PEM Electrolysis; Delft University of Technology: CD Delft, The Netherlands, 2019. [Google Scholar]
- Srinivasa Murthy, S. Heat and Mass Transfer in Solid State Hydrogen Storage: A Review. J. Heat Transf. 2012, 134, 031020. [Google Scholar] [CrossRef]
- Mohammadshahi, S.S.; Gray, E.M.; Webb, C.J. A review of mathematical modelling of metal-hydride systems for hydrogen storage applications. Int. J. Hydrogen Energy 2016, 41, 3470–3484. [Google Scholar] [CrossRef]
- Shafiee, S.; McCay, M.H. Different reactor and heat exchanger configurations for metal hydride hydrogen storage systems–A review. Int. J. Hydrogen Energy 2016, 41, 9462–9470. [Google Scholar] [CrossRef]
- Lototskyy, M.V.; Tolj, I.; Pickering, L.; Sita, C.; Barbir, F.; Yartys, V. The use of metal hydrides in fuel cell applications. Prog. Nat. Sci. Mater. Int. 2017, 27, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.Q.; Shabani, B. Proton exchange membrane fuel cells heat recovery opportunities for combined heating/cooling and power applications. Energy Convers. Manag. 2020, 204, 112328. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Shabani, B. Review of metal hydride hydrogen storage thermal management for use in the fuel cell systems. Int. J. Hydrogen Energy 2021, 46, 31699–31726. [Google Scholar] [CrossRef]
- Diaz, H.; Percheronguegan, A.; Achard, J.; Chatillon, C.; Mathieu, J. Thermodynamic and structural properties of LaNi5−yAly compounds and their related hydrides. Int. J. Hydrogen Energy 1979, 4, 445–454. [Google Scholar] [CrossRef]
- Huston, E.L.; Sandrock, G.D. Engineering properties of metal hydrides. J. Less. Common. Met. 1980, 74, 435–443. [Google Scholar] [CrossRef]
- Lototskyy, M.V.; Yartys, V.A.; Pollet, B.G.; Bowman, R.C. Metal hydride hydrogen compressors: A review. Int. J. Hydrogen Energy 2014, 39, 5818–5851. [Google Scholar] [CrossRef] [Green Version]
- Faisal, M.; Gupta, A.; Shervani, S.; Balani, K.; Subramaniam, A. Enhanced hydrogen storage in accumulative roll bonded Mg-based hybrid. Int. J. Hydrogen Energy 2015, 40, 11498–11505. [Google Scholar] [CrossRef]
- Chabane, D.; Ibrahim, M.; Harel, F.; Djerdir, A.; Candusso, D.; Elkedim, O. Energy management of a thermally coupled fuel cell system and metal hydride tank. Int. J. Hydrogen Energy 2019, 44, 27553–27563. [Google Scholar] [CrossRef]
- MyH2 300 n.d. Available online: https://www.h2planet.eu/nl/detail/MyH2300 (accessed on 10 October 2022).
- Afzal, M.; Mane, R.; Sharma, P. Heat transfer techniques in metal hydride hydrogen storage: A review. Int. J. Hydrog. Energy 2017, 42, 30661–30682. [Google Scholar] [CrossRef]
- Bai, X.-S.; Yang, W.-W.; Tang, X.-Y.; Yang, F.-S.; Jiao, Y.-H.; Yang, Y. Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study. Energy 2021, 220, 119738. [Google Scholar] [CrossRef]
- Gray, E.M. Alloy selection for multistage metal-hydride hydrogen compressors: A thermodynamic model. Int. J. Hydrogen Energy 2021, 46, 15702–15715. [Google Scholar] [CrossRef]
- Guo, X.; Wang, S.; Liu, X.; Li, Z.; Lü, F.; Mi, J.; Hao, L.; Jiang, L. Laves phase hydrogen storage alloys for super-high-pressure metal hydride hydrogen compressors. Rare Met. 2011, 30, 227–231. [Google Scholar] [CrossRef]
- Dantzer, P.; Meunier, F. What Materials to Use in Hydride Chemical Heat Pumps? Mater. Sci. Forum. 1988, 31, 1–18. [Google Scholar] [CrossRef]
- Khyzhun, O.; Lototskyy, M.; Riabov, A.; Rosenkilde, C.; Yartys, V.; Jørgensen, S.; Denys, R. Sn-containing (La,Mm)Ni5−Sn H5−6 intermetallic hydrides: Thermodynamic, structural and kinetic properties. J. Alloy. Compd. 2003, 356–357, 773–778. [Google Scholar] [CrossRef]
- Sharma, V.K.; Anil Kumar, E. Effect of measurement parameters on thermodynamic properties of La-based metal hydrides. Int. J. Hydrogen Energy 2014, 39, 5888–5898. [Google Scholar] [CrossRef]
- Sandrock, G. A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J. Alloy. Compd. 1999, 293–295, 877–888. [Google Scholar] [CrossRef]
- Tiwari, S.; Sharma, P. Optimization based methodology to design metal hydride reactor for thermal storage application. J. Energy Storage 2021, 41, 102845. [Google Scholar] [CrossRef]
- Lin, X.; Zhu, Q.; Leng, H.; Yang, H.; Lyu, T.; Li, Q. Numerical analysis of the effects of particle radius and porosity on hydrogen absorption performances in metal hydride tank. Appl. Energy 2019, 250, 1065–1072. [Google Scholar] [CrossRef]
- Ferekh, S.; Gwak, G.; Kyoung, S.; Kang, H.-G.; Chang, M.-H.; Yun, S.-H.; Oh, Y.-H.; Kim, W.; Kim, D.; Hong, T.; et al. Numerical comparison of heat-fin- and metal-foam-based hydrogen storage beds during hydrogen charging process. Int. J. Hydrogen Energy 2015, 40, 14540–14550. [Google Scholar] [CrossRef]
- Bai, X.-S.; Yang, W.-W.; Zhang, W.-Y.; Yang, F.-S.; Tang, X.-Y. Hydrogen absorption performance of a novel cylindrical MH reactor with combined loop-type finned tube and cooling jacket heat exchanger. Int. J. Hydrogen Energy 2020, 45, 28100–28115. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, V.K. Design and analysis of metal hydride reactor embedded with internal copper fins and external water cooling. Int. J. Energy Res. 2021, 45, 1836–1856. [Google Scholar] [CrossRef]
- Bai, X.-S.; Yang, W.-W.; Tang, X.-Y.; Dai, Z.-Q.; Yang, F.-S. Parametric optimization of coupled fin-metal foam metal hydride bed towards enhanced hydrogen absorption performance of metal hydride hydrogen storage device. Energy 2022, 243, 123044. [Google Scholar] [CrossRef]
- Afzal, M.; Sharma, P. Design and computational analysis of a metal hydride hydrogen storage system with hexagonal honeycomb based heat transfer enhancements-part A. Int. J. Hydrogen Energy 2021, 46, 13116–13130. [Google Scholar] [CrossRef]
- Corgnale, C.; Hardy, B.; Chahine, R.; Cossement, D. Hydrogen desorption using honeycomb finned heat exchangers integrated in adsorbent storage systems. Appl. Energy 2018, 213, 426–434. [Google Scholar] [CrossRef]
- Krishna, K.V.; Pandey, V.; Maiya, M.P. Bio-inspired leaf-vein type fins for performance enhancement of metal hydride reactors. Int. J. Hydrogen Energy 2022, 47, 23694–23709. [Google Scholar] [CrossRef]
- Nyamsi, S.N.; Yang, F.; Zhang, Z. An optimization study on the finned tube heat exchanger used in hydride hydrogen storage system–analytical method and numerical simulation. Int. J. Hydrogen Energy 2012, 37, 16078–16092. [Google Scholar] [CrossRef]
- Singh, A.; Maiya, M.P.; Srinivasa Murthy, S. Experiments on solid state hydrogen storage device with a finned tube heat exchanger. Int. J. Hydrogen Energy 2017, 42, 15226–15235. [Google Scholar] [CrossRef]
- Yao, J.; Zhu, P.; Guo, L.; Duan, L.; Zhang, Z.; Kurko, S.; Wu, Z. A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system. Int. J. Hydrogen Energy 2020, 45, 28087–28099. [Google Scholar] [CrossRef]
- Tong, L.; Yuan, Y.; Yang, T.; Bénard, P.; Yuan, C.; Xiao, J. Hydrogen release from a metal hydride tank with phase change material jacket and coiled-tube heat exchanger. Int. J. Hydrogen Energy 2021, 46, 32135–32148. [Google Scholar] [CrossRef]
- Lewis, S.D.; Chippar, P. Analysis of Heat and Mass Transfer During Charging and Discharging in a Metal Hydride-Phase Change Material Reactor. J. Energy Storage 2021, 33, 102108. [Google Scholar] [CrossRef]
- Alqahtani, T.; Bamasag, A.; Mellouli, S.; Askri, F.; Phelan, P.E. Cyclic behaviors of a novel design of a metal hydride reactor encircled by cascaded phase change materials. Int. J. Hydrogen Energy 2020, 45, 32285–32297. [Google Scholar] [CrossRef]
- El Mghari, H.; Huot, J.; Xiao, J. Analysis of hydrogen storage performance of metal hydride reactor with phase change materials. Int. J. Hydrogen Energy 2019, 44, 28893–28908. [Google Scholar] [CrossRef]
- El Mghari, H.; Huot, J.; Tong, L.; Xiao, J. Selection of phase change materials, metal foams and geometries for improving metal hydride performance. Int. J. Hydrogen Energy 2020, 45, 14922–14939. [Google Scholar] [CrossRef]
- Dieterich, M.; Pohlmann, C.; Bürger, I.; Linder, M.; Röntzsch, L. Long-term cycle stability of metal hydride-graphite composites. Int. J. Hydrogen Energy 2015, 40, 16375–16382. [Google Scholar] [CrossRef]
- Karmakar, A.; Mallik, A.; Gupta, N.; Sharma, P. ScienceDirect Studies on 10kg alloy mass metal hydride based reactor for hydrogen storage. Int. J. Hydrogen Energy 2020, 46, 5495–5506. [Google Scholar] [CrossRef]
- Pourpoint, T.L.; Velagapudi, V.; Mudawar, I.; Zheng, Y.; Fisher, T.S. Active cooling of a metal hydride system for hydrogen storage. Int J Heat Mass Transf. 2010, 53, 1326–1332. [Google Scholar] [CrossRef]
- Mellouli, S.; Askri, F.; Abhilash, E.; Ben Nasrallah, S. Impact of using a heat transfer fluid pipe in a metal hydride-phase change material tank. Appl. Therm. Eng. 2017, 113, 554–565. [Google Scholar] [CrossRef]
- Afzal, M.; Sharma, N.; Gupta, N.; Sharma, P. Transient simulation studies on a metal hydride based hydrogen storage reactor with longitudinal fins. J. Energy Storage 2022, 51, 104426. [Google Scholar] [CrossRef]
- Rabienataj Darzi, A.; Hassanzadeh Afrouzi, H.; Alizadeh, E.; Shokri, V.; Farhadi, M. Numerical Simulation of Heat and Mass Transfer during Absorption of Hydrogen in Metal Hydride Tank. Heat Transf. Res. 2017, 46, 75–90. [Google Scholar] [CrossRef]
- Bvumbe, T.J.; Bujlo, P.; Tolj, I.; Mouton, K.; Swart, G.; Pasupathi, S.; Pollet, B.G. Review on management, mechanisms and modelling of thermal processes in PEMFC. Hydrog. Fuel Cells 2016, 1, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Shabani, B.; Andrews, J. An experimental investigation of a PEM fuel cell to supply both heat and power in a solar-hydrogen RAPS system. Int. J. Hydrogen Energy 2011, 36, 5442–5452. [Google Scholar] [CrossRef]
- Davids, M.W.; Tolj, I.; Jao, T.-C.; Lototskyy, M.; Pasupathi, S.; Sita, C. Development of a Portable Polymer Electrolyte Membrane Fuel Cell System Using Metal Hydride as the Hydrogen Storage Medium. ECS Trans. 2016, 75, 553–562. [Google Scholar] [CrossRef]
- Borzenko, V.; Eronin, A. The use of air as heating agent in hydrogen metal hydride storage coupled with PEM fuel cell. Int. J. Hydrogen Energy 2016, 41, 23120–23124. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Bu, Q.; Guzy, C.J.; Li, Q.; Chen, W.; Wang, C. Novel fuel cell stack with coupled metal hydride containers. J. Power Sources 2016, 328, 329–335. [Google Scholar] [CrossRef]
- Urbanczyk, R.; Peil, S.; Bathen, D.; Heske, C.; Burfeind, J.; Hauschild, K.; Felderhoff, M.; Schuth, F. HT-PEM Fuel Cell System with Integrated Complex Metal Hydride Storage Tank. Fuel Cells 2011, 11, 911–920. [Google Scholar] [CrossRef]
- Førde, T.; Eriksen, J.; Pettersen, A.G.; Vie, P.J.S.; Ulleberg, Ø. Thermal integration of a metal hydride storage unit and a PEM fuel cell stack. Int. J. Hydrogen Energy 2009, 34, 6730–6739. [Google Scholar] [CrossRef]
- Giap, V.-T.; Lee, Y.D.; Kim, Y.S.; Ahn, K.Y. A novel electrical energy storage system based on a reversible solid oxide fuel cell coupled with metal hydrides and waste steam. Appl. Energy 2020, 262, 114522. [Google Scholar] [CrossRef]
- Delhomme, B.; Lanzini, A.; Ortigoza-Villalba, G.A.; Nachev, S.; de Rango, P.; Santarelli, M.; Marty, P.; Leone, P. Coupling and thermal integration of a solid oxide fuel cell with a magnesium hydride tank. Int. J. Hydrogen Energy 2013, 38, 4740–4747. [Google Scholar] [CrossRef]
- Yiotis, A.G.; Kainourgiakis, M.E.; Kosmidis, L.I.; Charalambopoulou, G.C.; Stubos, A.K. Thermal coupling potential of Solid Oxide Fuel Cells with metal hydride tanks: Thermodynamic and design considerations towards integrated systems. J. Power Sources 2014, 269, 440–450. [Google Scholar] [CrossRef]
- Shao, H. Heat Modeling and Material Development of Mg-Based Nanomaterials Combined with Solid Oxide Fuel Cell for Stationary Energy Storage. Energies 2017, 10, 1767. [Google Scholar] [CrossRef] [Green Version]
- Raju, M.; Khaitan, S. Charging dynamics of metal hydride hydrogen storage bed for small wind hybrid systems. Int. J. Hydrog. Energy 2011, 36, 10797–10807. [Google Scholar] [CrossRef]
- Gonzatti, F.; Nizolli, V.; Ferrigolo, F.Z.; Farret, F.A.; de Mello, M.A.S. Experimental Hydrogen Plant with Metal Hydrides to Store and Generate Electrical Power. Int. J. Emerg. Electr. Power Syst. 2016, 17, 59–67. [Google Scholar] [CrossRef]
- Kumar, K.; Alam, M.; Rakshit, D.; Dutta, V. Operational characteristics of metal hydride energy storage system in microgrid. Energy Convers. Manag. 2019, 187, 176–190. [Google Scholar] [CrossRef]
- Han, G.; Kwon, Y.; Kim, J.B.; Lee, S.; Bae, J.; Cho, E.; Lee, B.J.; Cho, S.; Park, J. Development of a high-energy-density portable/mobile hydrogen energy storage system incorporating an electrolyzer, a metal hydride and a fuel cell. Appl. Energy 2020, 259, 114175. [Google Scholar] [CrossRef]
- Diéguez, P.M.; Ursúa, A.; Sanchis, P.; Sopena, C.; Guelbenzu, E.; Gandía, L.M. Thermal performance of a commercial alkaline water electrolyzer: Experimental study and mathematical modeling. Int. J. Hydrogen Energy 2008, 33, 7338–7354. [Google Scholar] [CrossRef]
- Qiu, D.; Yi, P.; Peng, L.; Lai, X. Study on shape error effect of metallic bipolar plate on the GDL contact pressure distribution in proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2013, 38, 6762–6772. [Google Scholar] [CrossRef]
- Peng, L.; Yi, P.; Lai, X. Design and manufacturing of stainless steel bipolar plates for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2014, 39, 21127–21153. [Google Scholar] [CrossRef]
- Qiu, D.; Yi, P.; Peng, L.; Lai, X. Assembly design of proton exchange membrane fuel cell stack with stamped metallic bipolar plates. Int. J. Hydrogen Energy 2015, 40, 11559–11568. [Google Scholar] [CrossRef]
- Soupremanien, U.; Le Person, S.; Favre-Marinet, M.; Bultel, Y. Tools for designing the cooling system of a proton exchange membrane fuel cell. Appl. Therm. Eng. 2012, 40, 161–173. [Google Scholar] [CrossRef]
- Ogumerem, G.S.; Pistikopoulos, E.N. Parametric optimization and control toward the design of a smart metal hydride refueling system. AIChE J. 2019, 65, e16680. [Google Scholar] [CrossRef]
- Keow, A.L.J.; Mayhall, A.; Cescon, M.; Chen, Z. Active disturbance rejection control of metal hydride hydrogen storage. Int. J. Hydrogen Energy 2021, 46, 837–851. [Google Scholar] [CrossRef]
- Valverde, L.; Rosa, F.; del Real, A.J.; Arce, A.; Bordons, C. Modeling, simulation and experimental set-up of a renewable hydrogen-based domestic microgrid. Int. J. Hydrogen Energy 2013, 38, 11672–11684. [Google Scholar] [CrossRef]
- Valverde, L.; Rosa, F.; Bordons, C.; Guerra, J. Energy Management Strategies in hydrogen Smart-Grids: A laboratory experience. Int. J. Hydrogen Energy 2016, 41, 13715–13725. [Google Scholar] [CrossRef]
- Garcia-Torres, F.; Valverde, L.; Bordons, C. Optimal Load Sharing of Hydrogen-Based Microgrids with Hybrid Storage Using Model-Predictive Control. IEEE Trans. Ind. Electron. 2016, 63, 4919–4928. [Google Scholar] [CrossRef]
- Ghayur, A.; Verheyen, T.V. Increasing hydrogen energy efficiency by heat integration between fuel cell, hydride tank and electrolyzer. In Proceedings of the 2019 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Melbourne, VIC, Australia, 9–11 December 2019. [Google Scholar] [CrossRef]
Chemical Composition | Temperature Range (TL–TH) (°C) | −ΔH (kJ/mol-H2) | −ΔS (J/mol H2K) | Ref. |
---|---|---|---|---|
Ti0.9Zr0.1Mn1.4Cr0.35V0.2Fe0.05 | 25–100 | 25.89 | 106.9 | [48] |
LaNi5 | 25–200 | 31.80 | 110 | [49] |
TiFe0.9Mn0.1 | 0–100 | 29.70 | 107.7 | [40] |
LaNi4.7Sn0.3 | 25–80 | 36.51 | 112.6 | [50] |
MmNi4.15Fe0.85 | 25–200 | 25 | 105.4 | [40] |
TiCr1.5Mn0.25Fe0.25 | 10–165 | 19.32 | 101.6 | [41] |
LaNi4.7Al0.3 | 20–80 | 29.21 | 98 | [51] |
LaNi4.6Al0.4 | 20–80 | 34.04 | 108 | [51] |
TiCr1.8 | 0–100 | 20.2 | 111 | [52] |
Ti0.98Zr0.02V0.43 | 0–100 | 27.4 | 112 | [52] |
Methods | Advantages | Disadvantages |
---|---|---|
Passive thermal management |
|
|
Active thermal management |
|
|
Study | Year | Fuel Cell (FC) | Electrolyzer (EL) | Metal Hydride Tank (MH) | Thermal Integration with MH Tank | Thermal Integration Method | Main Objective of the Study | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | Capacity | Cooling Subsystem | Type | Capacity | Operation Mode | Hydride Bed Material | Capacity/ Volume | Cooling/Heating Subsystem | |||||
McDonald and Rowe [25] | 2006 | PEMFC | 1.2 kW | Air cooling | ~ | ~ | ~ | AB2 type MH | 250 SL (~22 g hydrogen) | External fins and Annular tube | Only FC | Active (Waste heat using fans) | To determine the MH design that provides the required hydrogen flow |
Førde et al. [82] | 2009 | PEMFC | 1.2 kW | Liquid cooling | PEM | 390 L/min | ~ | LaNi5 | 2900 NL (260 g hydrogen) | Internal fins with U-shape tubes | Only FC | Active (Water circulation loop) | To improve the desorption rate and controlling the MH tank temperature |
Urbanczyk et al. [81] | 2011 | HT-PEMFC | 260 W | Liquid cooling | ~ | ~ | ~ | NaAlH4 | ~ | ~ | Only FC | Active (Internal coiled tube with heat transfer fluid) | MH tank design that can charge/discharge the highest amount of hydrogen |
Raju and Khaitan [87] | 2011 | ~ | ~ | ~ | KOH alkaline | unspecified | unspecified | LaNi5 | unspecified | Cooling tubes and aluminum fins | Only EL | ~ | To increase the absorption rate and the system efficiency |
Delhomme et al. [84] | 2013 | SOFC | 1 kW | Air cooling | ~ | ~ | ~ | MgH2 | 1200 NL | ~ | Only FC | Active (Waste steam circulation loop) | To improve the absorption/desorption rates and system efficiency |
Tetuko et al. [28] | 2016 | PEMFC | 500 W | Edge cooling | ~ | ~ | ~ | LaNi5 | 660 SL (~61 g hydrogen) | ~ | Only FC | Passive (Waste heat using heat pipes) | To improve the hydrogen desorption rate |
Davids et al. [78] | 2016 | PEMFC | 130 W | Air cooling | ~ | ~ | ~ | AB2 type MH | 90 NL | Internal fins and graphite | Only FC | Active (Waste heat using fans) | To increase the desorption rate and the system efficiency |
Borzenko et al. [79] | 2016 | PEMFC | 2.5 Kw | Air cooling | ~ | ~ | ~ | La0.5Nd0.5Al0.1Fe0.4 Co0.2Ni4.3 | ~ | ~ | Only FC | Active (Waste heat using fans) | To improve the hydrogen desorption rate |
Liu et al. [80] | 2016 | PEMFC | 130 W | Air cooling | ~ | ~ | ~ | LaNi5 | 270 NL | ~ | Only FC | Active (Waste heat using fans) | To improve the heat transfer integration |
Gonzatti et al. [88] | 2016 | PEMFC | 3 kW | Liquid cooling | Alkaline | 3 kWh | unspecified | LaCeNi5 | 7000 L | Inner pipes | FC and EL | Active (Internal coiled tube with heat transfer fluid) | To improve the absorption/desorption rates and system efficiency |
Shao et al. [86] | 2017 | SOFC | ~ | Air cooling | ~ | ~ | ~ | MgH2 | ~ | ~ | Only FC | Active (Waste steam circulation loop) | To improve the system’s electrical efficiency |
Tetuko et al. [29] | 2018 | PEMFC | 130 W | Edge cooling | ~ | ~ | ~ | MmNiMnCo | 800 NL (~72 g hydrogen) | ~ | Only FC | Passive (Waste heat using heat pipes) | To improve the hydrogen desorption rate |
Chabane et al. [43] | 2019 | PEMFC | 500 W | Liquid cooling | ~ | ~ | ~ | FeTi | ~ | ~ | Only FC | Active (Heat transfer liquid circulation loop) | To control the MH tank temperature and keep the fuel cell temperature at the operation temperature |
Zhu et al. [27] | 2019 | PEMFC | 1.1 kW | Air cooling | ~ | ~ | ~ | unspecified | ~ | ~ | Only FC | Active (Water circulation loop) | To improve and control the hydrogen flow rate |
Kumar et al. [89] | 2019 | PEMFC | 1 kW | Chiller cooling | Alkaline | 600 W | unspecified | LaNi5 | 5000 L | External heating system | FC and EL | Active (Water circulation loop) | To improve the absorption/desorption rates and system efficiency |
Omrani et al. [26] | 2020 | PEMFC | 2.5 kW | Air cooling | ~ | ~ | ~ | AB5 type MH | 800 NL (~79.2 g hydrogen) | ~ | Only FC | Active (Waste heat using fans) | To improve the desorption rate and determine the optimum number of tanks |
Giap et al. [83] | 2020 | SOFC | 250 W | Liquid cooling | SOEC | ~ | ~ | MgH2 | ~ | ~ | FC and EL | Active (Waste steam circulation loop) | To improve the absorption/desorption rates and system efficiency |
Han et al. [90] | 2020 | PEMFC | 50 W | Air cooling | Water | 0.5 Nm3/h | unspecified | AB2 type MH | 900 NL | ~ | FC and EL | Active (Waste heat using fans) | To improve the absorption/desorption rates and system efficiency |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cetinkaya, S.A.; Disli, T.; Soyturk, G.; Kizilkan, O.; Colpan, C.O. A Review on Thermal Coupling of Metal Hydride Storage Tanks with Fuel Cells and Electrolyzers. Energies 2023, 16, 341. https://doi.org/10.3390/en16010341
Cetinkaya SA, Disli T, Soyturk G, Kizilkan O, Colpan CO. A Review on Thermal Coupling of Metal Hydride Storage Tanks with Fuel Cells and Electrolyzers. Energies. 2023; 16(1):341. https://doi.org/10.3390/en16010341
Chicago/Turabian StyleCetinkaya, Sera Ayten, Tacettin Disli, Gamze Soyturk, Onder Kizilkan, and C. Ozgur Colpan. 2023. "A Review on Thermal Coupling of Metal Hydride Storage Tanks with Fuel Cells and Electrolyzers" Energies 16, no. 1: 341. https://doi.org/10.3390/en16010341
APA StyleCetinkaya, S. A., Disli, T., Soyturk, G., Kizilkan, O., & Colpan, C. O. (2023). A Review on Thermal Coupling of Metal Hydride Storage Tanks with Fuel Cells and Electrolyzers. Energies, 16(1), 341. https://doi.org/10.3390/en16010341