Climate Change Impacts on Gaseous Hydrogen (H2) Potential Produced by Photovoltaic Electrolysis for Stand-Alone or Grid Applications in Europe
Abstract
1. Introduction
2. Material and Methods
2.1. Data Description
2.2. Data Quality and Bias Correction
2.3. Specific Studied Sites
2.4. PV Model
2.5. Electrolyser Model
2.6. H2O(l)/H2(g) Storage Tanks
2.7. DC-DC Converter
2.8. Energy Flow
3. Results—Discussion
3.1. H2(g) Resource Mapping (Historical Data)
3.2. Influence of Latitude Coordinates
3.3. Climate Change Scenarios (RCP)
3.3.1. Past Evolution (2005–2020)
3.3.2. Typical Tendencies 2005–2100
- Cartography results
- results for studied cities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hunt, J.D.; Nascimento, A.; Nascimento, N.; Werncke Vieira, L.; Romero, O.J. Possible pathways for oil and gas companies in a sustainable future: From the perspective of a hydrogen economy. Renew. Sustain. Energy Rev. 2022, 160, 112291. [Google Scholar] [CrossRef]
- Salehi, M.; Fahimifard, S.H.; Zimon, G.; Bujak, A.; Sadowski, A. The Effect of CO2 Gas Emissions on the Market Value, Price and Shares Returns. Energies 2022, 15, 9221. [Google Scholar] [CrossRef]
- Scheller, C.; Schmidt, K.; Spengler, T. Effects of CO2-Penalty costs on the production and recycling planning of lithium-ion batteries. Procedia CIRP 2021, 98, 643–647. [Google Scholar] [CrossRef]
- Runst, P.; Höhle, D. The German eco tax and its impact on CO2 emissions. Energy Policy 2022, 160, 112655. [Google Scholar] [CrossRef]
- Lin, B.; Jia, Z. How does tax system on energy industries affect energy demand, CO2 emissions, and economy in China? Energy Econ. 2019, 84, 104496. [Google Scholar] [CrossRef]
- Lagioia, G.; Spinelli, M.P.; Amicarelli, V. Blue and green hydrogen energy to meet European Union decarbonisation objectives. An overview of perspectives and the current state of affairs. Int. J. Hydrogen Energy, 2022; in press. [Google Scholar] [CrossRef]
- Seck, G.S.; Hache, E.; Sabathier, J.; Guedes, F.; Reigstad, G.A.; Strauss, J.; Wolfgang, O.; Ouassou, J.A.; Askeland, M.; Hjorth, I.; et al. Hydrogen and the decarbonization of the energy system in Europe in 2050: A detailed model-based analysis. Renew. Sustain. Energy Rev. 2022, 167, 112779. [Google Scholar] [CrossRef]
- Van Ruijven, B.; Lamarque, J.F.; Van Vuuren, D.P.; Kram, T.; Errens, H. Emission scenarios for a global hydrogen economy and the consequences for global air pollution. Glob. Environ. Change 2011, 21, 983–994. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, F.; Wang, L.; Zhang, Q. Flexible hydrogen production source for fuel cell vehicle to reduce emission pollution and costs under the multi-objective optimization framework. J. Clean. Product. 2022, 337, 130284. [Google Scholar] [CrossRef]
- Granovskii, M.; Dincer, I.; Rosen, M.A. Air pollution reduction via use of green energy sources for electricity and hydrogen production. Atmos. Environ. 2007, 41, 1777–1783. [Google Scholar] [CrossRef]
- Yang Dong, Z.; Yang, J.; Yu, L.; Daiyan, R.; Amal, R. A green hydrogen credit framework for international green hydrogen trading towards a carbon neutral future. Int. J. Hydrogen Energy 2022, 47, 728–734. [Google Scholar] [CrossRef]
- Tarhan, C.; Cil, M.A. A study on hydrogen, the clean energy of the future: Hydrogen storage methods. J. Energy Storage 2021, 40, 102676. [Google Scholar] [CrossRef]
- Word Population Data Sheet. Available online: https://interactives.prb.org/2020-wpds/ (accessed on 11 March 2022).
- IFPEN, Institut Français du Pétrole Energies Nouvelles. Available online: https://polenergie.org/nos-actualites/lhydrogene-renouvelable-ou-decarbone-a-quel-cout/ (accessed on 13 December 2022). (In French).
- Guibet, J.C. Carburants et Moteurs: Technologies, Énergie, Environnement; Publications de l’Institut Français du Pétrole: Technip, France, 1997; 830p. [Google Scholar]
- Muselli, P.A.; Delmon, N. Hydrogène, Biocarburants: Carburants D’avenir. Technical project report (internship); Engineering and Energy Paolitech School, University of Corsica: Corsica, France; 24p.
- Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 2021, 146, 111180. [Google Scholar] [CrossRef]
- Melaina, M.W.; Antonia, O.; Penev, M. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues; Technical Report; National Renewable Energy Laboratory: Golden, CO, USA, 2013; 131p.
- Darras, C.; Muselli, M.; Poggi, P.; Voyant, C.; Hoguet, J.C.; Montignac, F. PV output power fluctuations smoothing: The MYRTE platform experience. Int. J. Hydrogen Energy 2012, 37, 14015–14025. [Google Scholar] [CrossRef]
- Poggi, P.; Darras, C.; Muselli, M.; Pigelet, G. The PV-Hydrogen MYRTE platform—PV output power fluctuations smoothing. Energy Procedia 2013, 57, 607–616. [Google Scholar] [CrossRef]
- Darras, C.; Muselli, M.; Poggi, P.; Cristofari, C.; Le Pivert, X. Modeling and Simulating of A PV/H2 Hybrid System for Reducing Load Peaks on An Electrical Grid? ECS Trans. 2007, 12, 609–621. [Google Scholar] [CrossRef]
- Rasul, M.G.; Hazrat, M.A.; Sattar, M.A.; Jahirul, M.I.; Shearer, M.J. The future of hydrogen: Challenges on production, storage and applications. Energy Conver. Manag. 2022, 272, 116326. [Google Scholar] [CrossRef]
- Ravi, S.S.; Aziz, M. Clean hydrogen for mobility—Quo vadis? Int. J. Hydrogen Energy 2022, 5, 20632–20661. [Google Scholar] [CrossRef]
- Sezgin, B.; Devrim, Y.; Ozturk, T.; Eroglu, I. Hydrogen energy systems for underwater applications. Int. J. Hydrogen Energy 2020, 47, 19780–19796. [Google Scholar] [CrossRef]
- Fragiacomo, P.; Genovese, M. Technical-economic analysis of a hydrogen production facility for power-to-gas and hydrogen mobility under different renewable sources in Southern Italy. Energy Conver. Manag. 2020, 223, 113332. [Google Scholar] [CrossRef]
- International Energy Agency. Available online: https://www.iea.org/reports/sdg7-data-and-projections/access-to-electricity (accessed on 11 March 2022).
- Panchenko, V.A.; Daus, Y.V.; Kovalev, A.A.; Yudaev, I.V.; Litti, Y.V. Prospects for the production of green hydrogen: Review of countries with high potential. Int. J. Hydrogen Energy, 2022; in press. [Google Scholar] [CrossRef]
- Mouli-Castillo, J.; Heinemann, N.; Edlmann, K. Mapping geological hydrogen storage capacity and regional heating demands: An applied UK case study. Appl. Energy 2021, 283, 116348. [Google Scholar] [CrossRef]
- Bhandari, R. Green hydrogen production in West Africa—Case of Niger. Renew. Energy 2022, 196, 800–811. [Google Scholar] [CrossRef]
- Phap, V.M.; Sang, L.Q.; Ninh, N.Q.; Bonh, D.V.; Hung, B.B.; Huyen, C.T.; Tung, N.T. Feasibility analysis of hydrogen production potential from rooftop solar power plant for industrial zones in Vietnam. Energy Rep. 2022, 8, 14089–14101. [Google Scholar] [CrossRef]
- Posso, F.; Pulido, A.; Acevedo-Pàez, J.C. Towards the hydrogen economy: Estimation of green hydrogen production potential and the impact of its uses in Ecuador as a case study. Int. J. Hydrogen Energy, 2022; in press. [Google Scholar] [CrossRef]
- Babatunde, O.M.; Munda, J.L.; Yamam, Y. Hybridized off-grid fuel cell/wind/solar PV /battery for energy generation in a small household: A multi-criteria perspective. Int. J. Hydrogen Energy 2022, 47, 6437–6452. [Google Scholar] [CrossRef]
- Firtina-Ertis, I.; Acar, C.; Erturk, E. Optimal sizing design of an isolated stand-alone hybrid wind-hydrogen system for a zero-energy house. Appl. Energy 2020, 274, 115244. [Google Scholar] [CrossRef]
- Darras, C.; Sailler, S.; Thibault, C.; Muselli, M.; Poggi, P.; Hoguet, J.C.; Melscoet, S.; Pinton, E.; Grehant, S.; Gailly, F.; et al. Sizing of photovoltaic system coupled with hydrogen/oxygen storage based on the ORIENTE model. Int. J. Hydrogen Energy 2010, 35, 3322–3332. [Google Scholar] [CrossRef]
- Jansen, G.; Dehouche, Z.; Corrigan, H. Cost-effective sizing of a hybrid Regenerative Hydrogen Fuel Cell energy storage system for remote & off-grid telecom towers. Int. J. Hydrogen Energy 2021, 46, 18153–18166. [Google Scholar]
- Motalleb, M.; Dukic, A.; Firak, M. Solar hydrogen power system for isolated passive house. Int. J. Hydrogen Energy 2015, 40, 16001–16009. [Google Scholar] [CrossRef]
- Pal, P.; Mukherjee, V. Off-grid solar photovoltaic/hydrogen fuel cell system for renewable energy generation: An investigation based on techno-economic feasibility assessment for the application of end-user load demand in North-East India. Renew. Sustain. Energy Rev. 2021, 149, 111421. [Google Scholar] [CrossRef]
- Mohammed, O.H.; Amirat, Y.; Benbouzid, M.; Elbast, A. Optimal Design of a PV/Fuel Cell Hybrid Power System for the City of Brest in France. In Proceedings of the IEEE ICGE 2014, Sfax, Tunisia, 25–27 March 2014; pp. 119–123. [Google Scholar]
- ECMWF. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cordex-domains-single-levels?tab=overview (accessed on 1 October 2022).
- Euro-Cordex Community. Guidance for EURO-CORDEX Climate Projections Data Use. Available online: https://www.euro-cordex.net (accessed on 14 November 2022).
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Kram, T. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, B.C.; Carter, T.R.; Ebi, K.; Harrison, P.A.; Kemp-Benedict, E.; Kok, K.; Kriegler, E.; Preston, B.L.; Riahi, K.; Sillmann, J.; et al. Achievements and needs for the climate change scenario framework. Nat. Clim. Change 2020, 10, 1074–1084. [Google Scholar] [CrossRef] [PubMed]
- Evin, G.; Somot, S.; Hingray, B. Balanced estimate and uncertainty assessment of European climate change using the large EURO-CORDEX regional climate model ensemble. Earth Syst. Dynam. 2021, 12, 1543–1569. [Google Scholar] [CrossRef]
- EURO-CORDEX Guidelines, Version 1.1. Guidance for EURO-CORDEX Climate Projections Data Use. 2021. Available online: https://www.euro-cordex.net/imperia/md/content/csc/cordex/guidance_for_euro-cordex_climate_projections_data_use__2021-02_1_.pdf (accessed on 8 December 2022).
- Hawkins, E.; Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dynam. 2011, 37, 407–418. [Google Scholar] [CrossRef]
- Deser, C.; Knutti, R.; Solomon, S.; Phillips, A.S. Communication of the Role of Natural Variability in Future North American Climate. Nat. Clim. Change 2012, 2, 775–779. [Google Scholar] [CrossRef]
- Vautard, R.; Kadygrov, N.; Iles, C.; Boberg, F.; Buonomo, E.; Bülow, K.; Coppola, E.; Corre, L.; van Meijgaard, E.; Nogherotto, R.; et al. Evaluation of the large EURO-CORDEX regional climate model ensemble. J. Geophys. Res.-Atmos. 2021, 126, e2019JD032344. [Google Scholar] [CrossRef]
- Cai, Y.; Bréon, F.M. Wind power potential and intermittency issues in the context of climate change. Energy Conv. Manag. 2021, 240, 114276. [Google Scholar] [CrossRef]
- Costoya, X.; DeCastro, M.; Carvalho, D.; Arguillé-Pérez, B.; Gomez-Gesteira, M. Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: A case study on the western Iberian Peninsula. Renew. Sust. Energy Rev. 2022, 157, 112037. [Google Scholar] [CrossRef]
- Duchene, F.; Hamdi, R.; Schaeybroeck, B.V.; Caluwaerts, S.; De Troch, R.; De Cruz, L.; Termonia, P. Downscaling ensemble climate projections to urban scale: Brussels’s future climate at 1.5 °C, 2 °C, and 3 °C global warming. Urban Clim. 2022, 46, 101319. [Google Scholar] [CrossRef]
- Soares, P.M.M.; Lima, D.C.A. Water scarcity down to earth surface in a Mediterranean climate: The extreme future of soil moisture in Portugal. J. Hydrol. 2022, 615, 128731. [Google Scholar] [CrossRef]
- Jerez, S.; Tobin, I.; Vautard, R.; Montavez, J.P.; Lopez-Romero, J.M.; Thais, F.; Bartok, B.; Christensen, O.B.; Colette, A.; Déqué, M.; et al. The impact of climate change on photovoltaic power generation in Europe. Nat. Commun. 2015, 6, 10014. [Google Scholar] [CrossRef] [PubMed]
- Wild, M.; Ohmura, A.; Makowski, K. Impact of global dimming and brightening on global warming. Geophys. Res. Lett. 2007, 34, L04702. [Google Scholar] [CrossRef]
- TrinaSolar. Technical Documentation for VertexS TSM-390 DE09.08 Module. 2022. Available online: www.trinasolar.com (accessed on 9 November 2022).
- Shen, L.; Li, Z.; Ma, T. Analysis of the power loss and quantification of the energy distribution in PV module. Appl. Energy 2020, 260, 114333. [Google Scholar] [CrossRef]
- Picault, D. Reduction of Mismatch Losses in Grid-Connected Photovoltaic Systems Using Alternative Topologies. PhD Thesis, Institut National Polytechnique de Grenoble—INPG, Grenoble, France, 2010. Available online: https://tel.archives-ouvertes.fr (accessed on 15 September 2022).
- Espinosa-Lopez, M.; Darras, C.; Poggi, P.; Glises, R.; Baucourb, P.; Rakotondrainibe, A.; Besse, S.; Serre-Combe, P. Modelling and experimental validation of a 46 kW PEM high pressure water electrolyser. Renew. Energy 2018, 119, 160–173. [Google Scholar] [CrossRef]
- HELION Hydrogen Power Company. Technical Documentation 2010; HELION Hydrogen Power Company: Aix-en-Provence, France, 2010. [Google Scholar]
- Uzunoglu, M.; Onar, O.C.; Alam, M.S. Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications. Renew. Energy 2009, 34, 509–520. [Google Scholar] [CrossRef]
- FCH-JU. Study on Early Business Cases for H2 in Energy Storage and More Broadly Power to H2 Applications; Institution of Gas Engineers and Managers (IGEM): Brussels, Belgium, 2017. [Google Scholar]
- Ursua, A.; Martin, I.S.; Barrios, E.L.; Sanchis, P. Stand-alone operation of an alkaline water electrolyser fed by wind and photovoltaic systems. Int. J. Hydrogen Energy 2013, 38, 14952–14967. [Google Scholar] [CrossRef]
- Labbe, J. L’hydrogène Électrolytique Comme Moyen de Stockage D’électricité Pour Systèmes Photovoltaïques Isolés. PhD Thesis, Ecoles des Mines de Paris, Paris, France, 21 December 2006. Available online: https://pastel.archives-ouvertes.fr (accessed on 15 September 2022).
- WorldData. Available online: https://www.worlddata.info/africa/morocco/energy-consumption.php (accessed on 15 November 2022).
- Dumas, A.; Trancossi, M.; Anzillotti, S.; Madonia, M. Photovoltaic Production of Hydrogen at Stratospheric Altitude. J. Solar. Energy Eng. 2013, 135, 011018. [Google Scholar] [CrossRef]
- WMO. Available online: https://public.wmo.int/en/media/press-release/climate-change-indicators-and-impacts-worsened-2020 (accessed on 17 November 2022).
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability, Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland; 3068p.
- Djeziri, M.A.; Benmoussa, S.; Tapia Sanshez, R.; Palais, O.; Tina, G.M. Solar cell modeling in normal and degraded operations for simulation and monitoring. Sustain. Energy Technol. Assess. 2022, 51, 101990. [Google Scholar] [CrossRef]
- Crook, J.A.; Jones, L.A.; Forstera, P.M.; Crook, R. Climate change impacts on future photovoltaic and concentrated solar power energy output. Energy Environ. Sci. 2011, 4, 3101–3109. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, G.; Lu, C.; Zhou, X.; Li, Y. Impacts of climate change on photovoltaic energy potential: A case study of China. Appl. Energy 2020, 280, 115888. [Google Scholar] [CrossRef]
- Burnett, D.; Barbour, E.; Harrison, G.P. The UK solar energy resource and the impact of climate change. Renew. Energy 2014, 71, 333–343. [Google Scholar] [CrossRef]
- Perez, J.C.; Gonzalez, A.; Díaz, J.P.; Exposito, F.J.; Felipe, J. Climate change impact on future photovoltaic resource potential in an orographically complex archipelago, the Canary Islands. Renew. Energy 2019, 133, 749–759. [Google Scholar] [CrossRef]
- Panagea, I.S.; Tsanis, I.K.; Koutroulis, A.G.; Grillakis, M.G. Climate Change Impact on Photovoltaic Energy Output: The case of Greece. Advanc. Meteorol. 2014, 11, 264506. [Google Scholar] [CrossRef]
- Feron, S.; Cordero, R.R.; Damiani, A.; Jackson, R.B. Climate change extremes and photovoltaic power output. Nat. Sustain. 2021, 4, 270–276. [Google Scholar] [CrossRef]
- Mendes, M.P.; Rofriguez-Galiano, V.; Aragones, D. Evaluating the BFAST method to detect and characterise changing trends in water time series: A case study on the impact of droughts on the Mediterranean climate. Sci. Total Environ. 2022, 846, 157428. [Google Scholar] [CrossRef]
- Marras, P.A.; Lima, D.C.A.; Soares, P.M.M.; Cardoso, R.M.; Medas, D.; Dore, E.; De Giudici, G. Future precipitation in a Mediterranean island and streamflow changes fora small basin using EURO-CORDEX regional climate simulations and the SWAT model. J. Hydrol. 2021, 603, 127025. [Google Scholar] [CrossRef]
- De Girolamo, A.M.; Barca, E.; Leone, M.; Lo Porto, A. Impact of long-term climate change on flow regime in a Mediterranean basin. J. Hydrol. Region. Stud. 2022, 41, 101061. [Google Scholar] [CrossRef]
- Gomez-Gomez, J.D.; Pulido-Velazquez, D.P.; Collados-Lara, A.J.; Fernandez-Chacon, F. The impact of climate change scenarios on droughts and their propagation in an arid Mediterranean basin. A useful approach for planning adaptation strategies. Sci. Total Environ. 2022, 820, 153128. [Google Scholar] [CrossRef]
City | Country | Abbreviation | Lat. (°) | Long. (°) | Alt. (m asl.) | Köppen–Geiger Classification |
---|---|---|---|---|---|---|
Copenhagen | Denmark | CH | 55.676 | 12.566 | 13 | Cfb |
London | UK | LD | 51.507 | −0.128 | 17 | Cfb |
Madrid | Spain | MD | 40.417 | −3.704 | 647 | Csa |
Marrakesh | Morocco | MK | 31.630 | −8.009 | 459 | BSh |
Warsaw | Poland | WS | 52.229 | 21.012 | 100 | Dfb |
Paris | France | PR | 48.857 | 2.352 | 41 | Cfb |
Strasbourg | France | SB | 48.573 | 7.752 | 139 | Cfb |
Toulouse | France | TL | 43.605 | 1.444 | 153 | Cfb |
Marseille | France | MS | 43.296 | 5.369 | 1 | Csa |
Ajaccio | France | AJ | 41.919 | 8.739 | 5 | Csa |
MIN | - | - | 31.630 | −8.009 | 1 | - |
MAX | - | - | 55.676 | 21.012 | 647 | - |
MEAN | - | - | 45.771 | 4.739 | 158 | - |
SD | - | - | 6.666 | 7.909 | 209 | - |
MEDIAN | - | - | 46.089 | 3.861 | 71 | - |
Variable | Parameter | Value | Unity |
---|---|---|---|
Pnom_mod | PV module nominal power (STC a) | d | W |
- | Maximum PV module efficiency (STC) | 20.3 d | % |
- | PV module surface | 1.922 d | m² |
Cables efficiency (for line losses) | 0.99 | - | |
Connection efficiency | 0.996 b | - | |
Series association efficiency | 0.99 c | - | |
Parallel association efficiency | 0.98 c | - | |
μ | Temperature coefficient for Pnom_mod | −0.0034 d | %.°C−1 |
NOCT | Normal operating cell temperature | °C |
Variable | Parameter | Value | Unity |
---|---|---|---|
Electrolyser cells (series association) | 60 | - | |
Active area of a single cell | 290 | cm2 | |
Auxiliary power with no-load | 5 | % | |
C | Auxiliaries’ consumption coefficient | 17 | % |
H2O stoichiometry | 1.05 | - | |
F | Faraday’s constant | 96,485 | C.mol−1 |
- | H2 production flow at nominal power | 10 | Nm3.h−1 |
- | Electrolyser operating temperature | 20–60 | °C |
- | Electrolyser operating pressure | 35 | Bar |
Abbrev. (see Table 1) | sum (QH2(g)) [kg·yr−1] | sum (QH2O(l)) [L.yr−1] | Equiv. En. [MWh·yr−1] | τsun [%] | τtot [%] |
---|---|---|---|---|---|
CH | 882.4 | 8929.4 | 26.7 | 64.7 | 13.4 |
LD | 937.7 | 9489.3 | 28.4 | 63.9 | 13.3 |
MD | 1302.5 | 13,181.1 | 39.5 | 71.9 | 14.9 |
MK | 1400.7 | 14,174.8 | 42.4 | 74.1 | 15.5 |
WS | 922.3 | 9333.6 | 27.9 | 66.5 | 13.8 |
PR | 943.7 | 9550.7 | 28.6 | 64.5 | 13.4 |
SB | 936.5 | 9477.4 | 28.4 | 66.1 | 13.8 |
TL | 1097.4 | 11,105.2 | 33.2 | 69.0 | 14.3 |
MS | 1246.8 | 12,617.4 | 37.8 | 70.0 | 14.5 |
AJ | 1265.2 | 12,804.3 | 38.3 | 70.5 | 14.7 |
MIN | 882.4 | 8929.4 | 26.7 | 63.9 | 13.3 |
MAX | 1400.7 | 14,174.8 | 42.4 | 74.1 | 15.5 |
Abbrev. (see Table 1) | H2(g) | H2O(l) | Equiv. En. | τsun | τtot | |||||
---|---|---|---|---|---|---|---|---|---|---|
Scenarios | RCP 2.6 | RCP 8.5 | RCP 2.6 | RCP 8.5 | RCP 2.6 | RCP 8.5 | RCP 2.6 | RCP 8.5 | RCP 2.6 | RCP 8.5 |
CH | 3.6% | 2.0% | 3.6% | 2.0% | 3.7% | 2.2% | 0.9% | −0.2% | 1.1% | 0.0% |
LD | −5.1% | −2.4% | −5.1% | −2.4% | −4.9% | −2.5% | −0.1% | 1.0% | 0.2% | 1.3% |
MD | 0.1% | −0.9% | 0.1% | −0.9% | 0.0% | −1.0% | −0.8% | −1.8% | −0.6% | −1.6% |
MK | 0.5% | 2.7% | 0.5% | 2.7% | 0.7% | 2.8% | 1.6% | 1.6% | 1.7% | 1.7% |
WS | −0.1% | 2.5% | −0.1% | 2.5% | 0.0% | 2.5% | 1.4% | 1.8% | 2.2% | 2.2% |
PR | 0.9% | 7.2% | 0.9% | 7.2% | 1.0% | 7.0% | 2.4% | 1.5% | 2.7% | 1.7% |
SB | 2.9% | 5.2% | 2.9% | 5.2% | 2.8% | 4.9% | −0.7% | 1.3% | −0.6% | 1.5% |
TL | −0.3% | 1.8% | −0.3% | 1.8% | −0.3% | 2.1% | −1.0% | −1.6% | −0.8% | −1.5% |
MS | −2.5% | −2.6% | −2.5% | −2.6% | −2.6% | −2.6% | 0.1% | −1.4% | 0.4% | −1.2% |
AJ | −1.5% | −2.5% | −1.5% | −2.5% | −1.3% | −2.3% | 0.0% | −1.2% | 0.3% | −1.0% |
MIN | −5.1% | −2.6% | −5.1% | −2.6% | −4.9% | −2.6% | −1.0% | −1.8% | −0.8% | −1.6% |
MAX | 3.6% | 7.2% | 3.6% | 7.2% | 3.7% | 7.0% | 2.4% | 1.8% | 2.7% | 2.2% |
RCP | Statistics | kg·yr−1 | % | MWh·yr−1 |
---|---|---|---|---|
2.6 | Min | −142.0 | −13.2 | −4.3 |
Max | 223.3 | 24.7 | 6.8 | |
Mean | 16.8 | 1.8 | 0.5 | |
SD | 9.2 | 1.7 | 0.3 | |
Median | 17.3 | 1.7 | 0.5 | |
8.5 | Min | −251.5 | −28.5 | −7.6 |
Max | 176.8 | 27.4 | 5.4 | |
Mean | −31.3 | −2.7 | −1.0 | |
SD | 16.2 | 2.6 | 0.5 | |
Median | −27.4 | −2.9 | −0.8 |
Cities | RCP | ||||
---|---|---|---|---|---|
- | kg·yr−1 | kg·yr−1 | MWh·yr−1 | MWh·yr−1 | |
AJ | 2.6 | −17.5 (−1.4%) | 14.1 | −0.5 (−1.3%) | 0.4 |
8.5 | −30.4 (−2.4%) | 16.3 | −0.9 (−2.3%) | 0.5 | |
PR | 2.6 | 39.8 (4.2%) | 23.5 | 1.2 (4.2%) | 0.7 |
8.5 | 36.5 (3.9%) | 25.6 | 1.1 (3.8%) | 0.8 | |
MS | 2.6 | −13.2 (−1.1%) | 15.3 | −0.4 (−1.1%) | 0.5 |
8.5 | −29.2 (−2.3%) | 19.2 | −0.9 (−2.4%) | 0.6 | |
TL | 2.6 | 18.5 (1.7%) | 20.1 | 0.6 (1.9%) | 0.6 |
8.5 | 13.1 (1.2%) | 16.6 | 0.4 (1.3%) | 0.5 | |
SB | 2.6 | 40.5 (4.3%) | 31.5 | 1.2 (4.3%) | 1.0 |
8.5 | 35.6 (3.8%) | 26.2 | 1.0 (−3.7%) | 0.8 | |
MK | 2.6 | −3.9 (−0.3%) | 23.0 | −0.1 (−0.2%) | 0.7 |
8.5 | −26.4 (−1.9%) | 28.4 | −0.7 (−1.8%) | 0.9 | |
LD | 2.6 | −15.5 (−1.7%) | 22.0 | −0.5 (−1.6%) | 0.7 |
8.5 | −14.2 (−1.5%) | 20.1 | −0.4 (−1.5%) | 0.6 | |
CH | 2.6 | 23.9 (2.7%) | 21.4 | 0.8 (2.9%) | 0.7 |
8.5 | 6.8 (0.8%) | 29.5 | 0.3 (0.9%) | 0.9 | |
WS | 2.6 | 22.1 (2.4%) | 21.8 | 0.7 (2.6%) | 0.7 |
8.5 | 3.4 (0.4%) | 25.2 | 0.1 (0.5%) | 0.8 | |
MD | 2.6 | −11.2 (−0.9%) | 19.8 | −0.4 (−0.9%) | 0.6 |
8.5 | −43.5 (−3.3%) | 24.6 | −1.4 (−3.4%) | 0.7 | |
MIN (2.6) | - | −17.5 (−1.4%) | - | −0.5 (−1.6%) | - |
MAX (2.6) | - | 40.5 (4.3%) | - | 1.2 (4.3%) | - |
MIN (8.5) | - | −43.5 (−3.3%) | - | −1.4 (−3.4%) | - |
MAX (8.5) | - | 36.5 (3.9%) | - | 1.1 (3.8%) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muselli, P.-A.; Antoniotti, J.-N.; Muselli, M. Climate Change Impacts on Gaseous Hydrogen (H2) Potential Produced by Photovoltaic Electrolysis for Stand-Alone or Grid Applications in Europe. Energies 2023, 16, 249. https://doi.org/10.3390/en16010249
Muselli P-A, Antoniotti J-N, Muselli M. Climate Change Impacts on Gaseous Hydrogen (H2) Potential Produced by Photovoltaic Electrolysis for Stand-Alone or Grid Applications in Europe. Energies. 2023; 16(1):249. https://doi.org/10.3390/en16010249
Chicago/Turabian StyleMuselli, Pierre-Antoine, Jean-Nicolas Antoniotti, and Marc Muselli. 2023. "Climate Change Impacts on Gaseous Hydrogen (H2) Potential Produced by Photovoltaic Electrolysis for Stand-Alone or Grid Applications in Europe" Energies 16, no. 1: 249. https://doi.org/10.3390/en16010249
APA StyleMuselli, P.-A., Antoniotti, J.-N., & Muselli, M. (2023). Climate Change Impacts on Gaseous Hydrogen (H2) Potential Produced by Photovoltaic Electrolysis for Stand-Alone or Grid Applications in Europe. Energies, 16(1), 249. https://doi.org/10.3390/en16010249