Combining Shift to Biogas Production in a Large WWTP in China with Optimisation of Nitrogen Removal
Abstract
:1. Introduction
- Mixed liquor dosing strategy: The mixed liquor should be dosed carefully, and a tank to store it is necessary. Free volume of unused tanks (e.g., by-passed primary clarifiers) can also be useful. The centrate is ideally dosed in periods with low-load or favourable C/N ratio, which can be detected by incorporating online measurements.
- By-pass of primary clarifiers: In WWTP with upstream denitrification, if the COD in the primary treatment effluent is low and the nitrate concentration in the aeration tank effluent rises, a by-pass of the primary clarifiers may be useful to improve the C/N ratio and reduce the need for external C sources, which can save significant costs [13]. Moreover, peak loads of nutrients are a problem commonly observed in WWTP with anaerobic digestion. By shutting down primary clarifiers, either partially or totally, they can be used as storage tanks in the case of peak loads, making substance and hydraulic load compensation and equalization possible.
- Modification of the denitrification proportion: If the denitrification volume is too small, the denitrification capacity of the plant can be impaired. A proportion of denitrification volume to total activated sludge volume (VD/VAT) between 20% and 60% is recommended [11].
- Use of online measurements to control the oxygen supply in the aeration basins: a dynamic aeration control can contribute to improve nitrogen removal and at the same time reduce the energy demand.
- Use of side-stream treatments for nitrogen removal: The centrate or sludge liquor streams can be treated separately from the mainstream to avoid the problems associated with the backload. This strategy can apply treatments such as the anaerobic oxidation of ammonium (anammox process), denitritation/nitritation, and deammonification (DEMON+ process) among others, which are adequate usually for nitrogen-rich flows with high temperatures [14]. These processes have been successfully tested in WWTP around the world [15], with the anammox process and the nitrification/denitrification in SBR mode being the mostly spread [9].
2. Materials and Methods
2.1. Description of the Example WWTP in China and Model
2.2. Design of an Anaerobic Digestion Stage
2.3. Simulation Model with AnSS
2.4. Tests for Nitrogen Removal Optimisation
- Centrate dosing strategy: The centrate liquid is dosed according to the total nitrogen concentration of the effluent, to maintain an effluent below 10 mg/L, based on the 2-hourly average. A 3800 m3 mixed liquor tank was added and the dosing was set to the minimum when the effluent TN values are above 8 mg/L, a linear increase if the TN effluent values are between 5 and 8 mg/L, and to the maximum when the TN effluent values are below 5 mg/L.
- Bypass of the primary clarifiers (PC) and use as centrate storage: With the bypass of two PC (ca. 6400 m3), equivalent to 50%, the storage volume is significantly increased, allowing for an increased dosing flexibility. The bypass of three PC increases the storage volume in further ca. 3200 m3.
- Increasing denitrification volume: The example WWTP has an insufficient denitrification volume of only 17% VD/VAT, leading to a limited denitrification capacity. Therefore, the increment of the denitrification volume (VD) was tested by:
- ○
- By reducing aerated volume, the denitrification volume proportion is augmented to 30%.
- ○
- By replacing the anaerobic tank, a change in recirculation position of the nitrate rich recirculation stream can transform the anaerobic tank to an anoxic tank, accounting for a total VD/VAT of 33%.
- Use of ammonium measurements to control the oxygen supply: implementation of an ammonium-based aeration controller in the nitrification tanks, based on a maximum effluent value.
- Implementation of an anammox-like process: a block to imitate a simplified anammox process was incorporated considering the removal of a constant 70% of the ammonium contained in the centrate water.
3. Results and Discussion
3.1. Energy and Sludge Production
3.2. Norm Compliance
3.3. Optimisation Strategies for Nitrogen Removal
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DWA. Biologische Stabilisierung von Klärschlamm: Merkblatt DWA-M 368; DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.: Hennef, Germany, 2014; ISBN 978-3-944328-60-7. [Google Scholar]
- Tchobanoglous, G. Wastewater Engineering: Treatment and Resource Recovery, 5th ed.; McGraw-Hill: New York, NY, USA, 2014; ISBN 1259250938. [Google Scholar]
- Gretzschel, O.; Angerbauer, F.; Jung, T. Umstellung von Kläranlagen auf Schlammfaulung: Energetisches und Ökonomisches Optimierungspotenzial; Ökoeffizienz in der Wasserwirtschaft: Mainz, Germany, 2014; Available online: https://mueef.rlp.de/fileadmin/mulewf/Publikationen/Umstellung_von_Klaeranlagen_auf_Schlammfaulung.pdf (accessed on 29 May 2021).
- Yang, G.; Zhang, G.; Wang, H. Current state of sludge production, management, treatment and disposal in China. Water Res. 2015, 78, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Zhu, F.; Li, Q.; Xue, C.; Xia, X.; Yu, H.; Zhao, Q.; Jiang, J.; Bai, S. Development, current state and future trends of sludge management in China: Based on exploratory data and CO2-equivaient emissions analysis. Environ. Int. 2020, 144, 106093. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.H.; Yang, W.N.; Ngo, H.H.; Guo, W.S.; Jin, P.K.; Dzakpasu, M.; Yang, S.J.; Wang, Q.; Wang, X.C.; Ao, D. Current status of urban wastewater treatment plants in China. Environ. Int. 2016, 92–93, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Silvestre, G.; Fernández, B.; Bonmatí, A. Significance of anaerobic digestion as a source of clean energy in wastewater treatment plants. Energy Convers. Manag. 2015, 101, 255–262. [Google Scholar] [CrossRef]
- Siegrist, H.; Salzgeber, D.; Eugster, J.; Joss, A. Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal. Water Sci. Technol. 2008, 57, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, N. Sustainable Biogas Production in Municipal Wastewater Treatment Plants; IEA Bioenergy: Paris, France, 2015. [Google Scholar]
- Smith, K.; Liu, S.; Liu, Y.; Guo, S. Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change. Renew. Sustain. Energy Rev. 2018, 91, 41–58. [Google Scholar] [CrossRef]
- DWA. Bemessung von Einstufigen Belebungsanlagen; June 2016; Deutsche Vereinigung für Wasserwirtschaft Abwasser und Abfall: Hennef, Germany, 2016; ISBN 978-3-88721-332-9. [Google Scholar]
- Janus, H.M. Don’t reject the idea of treating reject water. In Chemical Water and Wastewater Treatment: Proceedings of the Gothenburg Symposium; Springer: Berlin/Heidelberg, Germany, 1996; ISBN 3-540-61624-1. [Google Scholar]
- Wiese, J. Transparente Prozessüberwachung von Biogasanlagen und Kläranlagen durch Einsatz moderner Mess- und Automationstechnik: Habilitationsschrift; Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg: Hamburg, Germany, 2014. [Google Scholar]
- Ronan, E.; Aqeel, H.; Wolfaardt, G.M.; Liss, S.N. Recent advancements in the biological treatment of high strength ammonia wastewater. World J. Microbiol. Biotechnol. 2021, 37, 158. [Google Scholar] [CrossRef] [PubMed]
- Lackner, S.; Gilbert, E.M.; Vlaeminck, S.E.; Joss, A.; Horn, H.; van Loosdrecht, M.C.M. Full-scale partial nitritation/anammox experiences—An application survey. Water Res. 2014, 55, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Araya, M.; Hilgenfeldt, V.; Peng, D.; Steinmetz, H.; Wiese, J. Modelling to Lower Energy Consumption in a Large WWTP in China While Optimising Nitrogen Removal. Energies 2021, 14, 5826. [Google Scholar] [CrossRef]
- Henze, M. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3; IWA Pub: London, UK, 2000; ISBN 9781780402369. [Google Scholar]
- Dohmann, M. Bemessung der Belebungsbecken nach dem Ansatz der Hochschulgruppe (HSG-Ansatz). KA Korresp. Abwasser 1993, 8, 1240. [Google Scholar]
- Siegrist, H.; Vogt, D.; Garcia-Heras, J.L.; Gujer, W. Mathematical model for meso- and thermophilic anaerobic sewage sludge digestion. Environ. Sci. Technol. 2002, 36, 1113–1123. [Google Scholar] [CrossRef] [PubMed]
- Pinnekamp, J.; Schröder, M.; Bolle, F.-W.; Gramlich, E.; Gredigk-Hoffmann, S.; Koenen, S.; Loderhose, M.; Miethig, S.; Ooms, K. Energie in Abwasseranlagen Handbuch NRW; Ministerium für Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen: Düsseldorf, Germany, 2017. [Google Scholar]
- Ramachandran, A.; Rustum, R.; Adeloye, A.J. Review of Anaerobic Digestion Modeling and Optimization Using Nature-Inspired Techniques. Processes 2019, 7, 953. [Google Scholar] [CrossRef] [Green Version]
- Leu, S.-Y.; Chan, L.; Stenstrom, M.K. Toward long solids retention time of activated sludge processes: Benefits in energy saving, effluent quality, and stability. Water Environ. Res. 2012, 84, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Schraa, O.; Rieger, L.; Alex, J.; Miletić, I. Ammonia-based aeration control with optimal SRT control: Improved performance and lower energy consumption. Water Sci. Technol. 2019, 79, 63–72. [Google Scholar] [CrossRef] [PubMed]
- IEEE (Ed.) 2020 13th International UNIMAS Engineering Conference (EnCon): Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia, 27–28 October 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Medinilla, V.R.; Sprague, T.; Marseilles, J.; Burke, J.; Deshmukh, S.; Delagah, S.; Sharbatmaleki, M. Impact of Ammonia-Based Aeration Control (ABAC) on Energy Consumption. Appl. Sci. 2020, 10, 5227. [Google Scholar] [CrossRef]
- Hauck, M.; Maalcke-Luesken, F.A.; Jetten, M.S.; Huijbregts, M.A. Removing nitrogen from wastewater with side stream anammox: What are the trade-offs between environmental impacts? Resour. Conserv. Recycl. 2016, 107, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Bauer, H.; Johnson, T.D.; Johnson, B.R.; Oerke, D.; Graziano, S. Comparison of sidestream treatment technologies: Post aerobic digestion and Anammox. Water Sci. Technol. 2016, 73, 2789–2803. [Google Scholar] [CrossRef] [PubMed]
- Fenu, A.; Smolders, S.; de Gussem, K.; Weemaes, M. Conflicting carbon footprint and energy saving in a side-stream Anammox Process. Biochem. Eng. J. 2019, 151, 107336. [Google Scholar] [CrossRef]
- Åmand, L.; Olsson, G.; Carlsson, B. Aeration control—A review. Water Sci. Technol. 2013, 67, 2374–2398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gretzschel, O.; Schmitt, T.G.; Hansen, J.; Siekmann, K.; Jakob, J. Sludge digestion instead of aerobic stabilization—A cost benefit analysis based on experiences in Germany. Water Sci. Technol. 2014, 69, 430–437. [Google Scholar] [CrossRef] [PubMed]
Parameter | Concentration, mg/L | ||||
---|---|---|---|---|---|
COD | BOD | NH4-N | TN | TP | |
Grade 1-A | 50 | 10 | 5 (8) | 15 | 0.5 |
City Standard | 30 | 10 | 1.5 (3) | 10 | 0.3 |
Strategy Description | Scenario | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Base | AD-0 | AD-1 | AD-2 | AD-3 | AD-4 | AD-5 | AD-6 | AD-7 | AD-8 | AD-9 | |
Anaerobic digestion and sludge age adjustment | x | x | x | x | x | x | x | x | x | x | |
Centrate tank with dosing based on the TN effluent concentration | x | x | x | x | x | x | x | x | x | ||
Bypass of 50% of the PC and use as centrate storage tank | x | x | x | x | x | x | |||||
Bypass of 75% of the PC and use as centrate storage tank | x | x | |||||||||
Reduction of aerated volume to increase anoxic volume to VD/VAT = 0.25 | x | ||||||||||
Anaerobic volume as anoxic tank, VD/VAT = 0.33 | x | x | |||||||||
Aeration control based on the NH4-N effluent values 1 | x | x | x | ||||||||
Intermittent aeration (VN) based on the NH4-N effluent values | x | ||||||||||
Aeration control based on the NH4-N effluent values 2 | x | ||||||||||
Anammox-like process | x |
Electrical Energy Demand | Base | AD-0 | Change in AD-0 Respect to Base |
---|---|---|---|
GWh/a | GWh/a | ||
Aeration | 4.24 | 3.78 | −10.73% |
Excess sludge pumping | 0.15 | 0.19 | +133% |
Sludge dewatering | 1.52 | 1.19 | −21% |
Digestor 1 | - | 0.62 | +4.37% |
Total demand | 14.17 | 14.07 | −0.77% |
Total production | - | 5.1 | - |
Total balance | 14.17 | 8.97 | −36.77% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergara-Araya, M.; Hilgenfeldt, V.; Steinmetz, H.; Wiese, J. Combining Shift to Biogas Production in a Large WWTP in China with Optimisation of Nitrogen Removal. Energies 2022, 15, 2710. https://doi.org/10.3390/en15082710
Vergara-Araya M, Hilgenfeldt V, Steinmetz H, Wiese J. Combining Shift to Biogas Production in a Large WWTP in China with Optimisation of Nitrogen Removal. Energies. 2022; 15(8):2710. https://doi.org/10.3390/en15082710
Chicago/Turabian StyleVergara-Araya, Mónica, Verena Hilgenfeldt, Heidrun Steinmetz, and Jürgen Wiese. 2022. "Combining Shift to Biogas Production in a Large WWTP in China with Optimisation of Nitrogen Removal" Energies 15, no. 8: 2710. https://doi.org/10.3390/en15082710
APA StyleVergara-Araya, M., Hilgenfeldt, V., Steinmetz, H., & Wiese, J. (2022). Combining Shift to Biogas Production in a Large WWTP in China with Optimisation of Nitrogen Removal. Energies, 15(8), 2710. https://doi.org/10.3390/en15082710