A Comprehensive Review on the Prospects of Using Hydrogen–Methane Blends: Challenges and Opportunities
Abstract
:1. Introduction
2. Energy Characteristics of Hydrogen and Methane–Hydrogen Mixtures
3. The Practice of Using Hydrogen in Power Plants and Transport
- -
- Adding 15% hydrogen to CNG engines on lean fuel increases ignition time to 1.46 ms compared to 1.20 ms for natural gas;
- -
- Methane–hydrogen–air mixtures have a significantly increased braking efficiency (adding only 5–7% hydrogen is enough) and power output (an increase of 5–10% compared to natural gas), i.e., hydrogen additives are especially effective in lean mixtures;
- -
- When testing methane–hydrogen mixtures, a strong decrease in CO emission was observed (with the addition of 15% hydrogen by volume, emission was not observed at all, and for an engine with a speed of 3500 rpm when operating on natural gas, CO emission was 0.12–0.40%), i.e., mixed hydrogen fuel is more environmentally friendly.
4. Emission and Performance Characteristics of Methane–Hydrogen Mixtures
CH4 + HO2 = CH3 + H2O2
HO2 + H = OH + OH
5. Transportation Logistics of Hydrogen and Methane–Hydrogen Mixtures
- (a)
- 2% hydrogen if the system is connected to a natural gas filling station;
- (b)
- 5% hydrogen if no filling station, no gas turbines and no gas engines with a hydrogen specification less than 5% are connected;
- (c)
- 10% hydrogen if no filling station, no gas turbines and no gas engines with a hydrogen specification less than 10% are connected.
6. Safety Problems of Using of Hydrogen and Methane–Hydrogen Mixtures
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arutyunov, V.S.; Lisichkin, G.V. Energy resources of the 21st century: Problems and forecasts. Can renewable energy sources replace fossil fuels. Russ. Chem. Rev. 2017, 86, 777–804. [Google Scholar] [CrossRef]
- Vasudevan, S.; Farooq, S.; Karimi, I.A.; Saeys, M.; Quah, M.C.G.; Agrawal, R. Energy penalty estimates for CO2 capture: Comparison between fuel types and capture-combustion modes. Energy 2016, 103, 709–714. [Google Scholar] [CrossRef]
- Yu, K.M.K.; Curcic, I.; Gabriel, J.; Tsang, S.C.E. Recent Advances in CO2 Capture and Utilization. ChemSusChem 2008, 1, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Carbon Capture, Use and Storage. European Commission: A Legal Framework for the Safe Geological Storage of Carbon Dioxide. Available online: https://ec.europa.eu/clima/eu-action/carbon-capture-use-and-storage_en (accessed on 20 December 2021).
- The Paris Agreement. 2015. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 29 December 2021).
- Hydrogen Council. Available online: https://hydrogencouncil.com/en/ (accessed on 29 December 2021).
- Hydrogen Scaling Up. A Sustainable Pathway for the Global Energy Transition. Hydrogen Council (November 2017). Available online: https://hydrogencouncil.com/wp-content/uploads/2017/11/Hydrogen-scaling-up-Hydrogen-Council.pdf (accessed on 24 November 2021).
- Makaryan, I.A.; Sedov, I.V. Cost-Effectiveness Assessment of the Scale of Hydrogen Production by Various Methods. Russ. J. Gen. Chem. 2021, 91, 2743–2757. [Google Scholar] [CrossRef]
- Makaryan, I.A.; Sedov, I.V. Catalytic Reactors for Dehydrogenation of Liquid Organic Hydrogen Carriers. Russ. J. Appl. Chem. 2021, 94, 1011–1021. [Google Scholar] [CrossRef]
- Source and Scale Are Biggest Challenges as Hydrogen Interest Grows. S&P Global Platts. Available online: https://www.spglobal.com/en/research-insights/articles/source-and-scale-are-biggest-challenges-as-hydrogen-interest-grows (accessed on 8 December 2021).
- Arutyunov, V.S. On the sources of hydrogen for the global replacement of hydrocarbons. Acad. Lett. 2021, 3692. [Google Scholar] [CrossRef]
- Arutyunov, V.S. Problems and challenges of hydrogen energy. Combust. Plasma Chem. 2021, 19, 245–255. (In Russian) [Google Scholar]
- Arutyunov, V.S. Hydrogen power engineering: Meaning, sources, problems, prospect. Pet. Chem. 2022, in press. [Google Scholar]
- Verhelst, S.; Demuynck, J.; Sierens, R.; Huyskens, P. Impact of variable valve timing on power, emissions and backfire of a bi-fuel hydrogen/gasoline engine. Int. J. Hydrogen Energy 2010, 35, 4399–4408. [Google Scholar] [CrossRef] [Green Version]
- Baird, A.R.; Glover, A.M.; Ehrhart, B.D. Review of Release Behavior of Hydrogen & Natural Gas Blends from Pipelines. Sandia Report 2021. SAND2021-9802. Available online: https://www.energy.sandia.gov/wp-content (accessed on 24 November 2021).
- Singh, A.P.; Pal, A.; Agarwal, A.K. Comparative particulate characteristics of hydrogen, CNG, HCNG, gasoline and diesel fueled engines. Fuel 2016, 185, 491–499. [Google Scholar] [CrossRef]
- Hermanns, R.T.E. Laminar Burning Velocities of Methane-Hydrogen-Air Mixtures. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 1 January 2007. Available online: https://research.tue.nl/en/publications/laminar-burning-velocities-of-methane-hydrogen-air-mixtures (accessed on 21 January 2021). [CrossRef]
- Hu, E.; Huang, Z.; He, J.; Jin, C.; Zheng, J. Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames. Int. J. Hydrogen Energy 2009, 34, 4876–4888. [Google Scholar] [CrossRef]
- Gelfand, B.E.; Silnikov, M.V.; Sergey, P.; Medvedev, S.P.; Khomik, S.V. Thermo-Gas Dynamics of Hydrogen Combustion and Explosion; Springer: Berlin/Heidelberg, Germany, 2012; 326p, eBook; ISBN 978-3-642-25352-2. [Google Scholar]
- Burluka, A.A.; Fairweather, M.; Ormsby, M.P.; Sheppard, C.G.W.; Woolley, R. The laminar burning properties of premixed methane-hydrogen flames determined using a novel analysis method. In Proceedings of the Third European Combustion Meeting (ECM 2007), Chania Crete, Greece, 11–13 April 2007; pp. 1–5. [Google Scholar]
- Smith, P.G.; Golden, D.M.; Frenklach, M.; Moriarty, N.W.; Goldenberg, M.; Bowman, N.W.; Hanson, R.K.; Song, S.; Gardiner, W.C., Jr.; Lissianski, V.V.; et al. WHAT’S NEW IN GRI-Mech 3.0. Available online: http://combustion.berkeley.edu/gri-mech/version30/text30.html (accessed on 19 March 2022).
- Konnov, A. Detailed Reaction Mechanism for Small Hydrocarbons Combustion. Release 0.5. 2000. Available online: http://homepages.vub.ac.be/~akonnov/ (accessed on 21 December 2021).
- Di Sarli, V.; Di Benedettob, A. Laminar burning velocity of hydrogen–methane/air premixed flames. Int. J. Hydrogen Energy 2007, 32, 637–646. [Google Scholar] [CrossRef]
- Tatouh, T.; Halter, F.; Mounaim-Rousselle, C. The Effect of Hydrogen Enrichment on CH4-Air Combustion in Strong Dilution. In Proceedings of the 31st Meeting on Combustion, Italian Section of the Combustion Institute, Firenze, Italy, 17–20 June 2008; XII-13. XII-13.rtf-10.1.1.567.3214. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.567.3214&rep=rep1&type=pdf (accessed on 15 January 2022).
- Arutyunov, A.V.; Belyaev, A.A.; Inovenkov, I.N.; Arutyunov, V.S. The influence of hydrogen on the burning velocity of methane-air mixtures at elevated temperatures. Combust. Explos. 2019, 12, 4–10. [Google Scholar] [CrossRef]
- Troshin, K.Y.; Borisov, A.A.; Rakhmetov, A.N.; Arutyunov, V.S.; Politenkova, G.G. Burning velocity of methane–hydrogen mixtures at elevated pressures and temperatures. Russ. J. Phys. Chem. B 2013, 7, 290–301. [Google Scholar] [CrossRef]
- Eckart, S.; Pizzuti, L.; Fritsche, C.; Krause, H. Experimental study and proposed power correlation for laminar burning velocity of hydrogendiluted methane with respect to pressure and temperature variation. Int. J. Hydrogen Energy 2022, 47, 6334–6348. [Google Scholar] [CrossRef]
- Troshin, K.Y.; Nikitin, A.V.; Belyaev, A.A.; Arutyunov, A.V.; Kiryushin, A.A.; Arutyunov, V.S. Experimental determination of self-ignition delay of mixtures of methane with light alkanes. Combust. Explos. Shock. Waves 2019, 55, 526–533. [Google Scholar] [CrossRef]
- Troshin, K.Y.; Belyaev, A.A.; Arutyunov, A.V.; Tsarenko, A.A.; Nikitin, A.V.; Arutyunov, V.S. The influence of pressure on the self-ignition delay ofmethane–hydrogen–air mixtures. Combust. Explos. 2020, 13, 18–32. [Google Scholar] [CrossRef]
- Arutyunov, V.S.; Belyaev, A.A.; Troshin, K.Y.; Arutyunov, A.V.; Tsarenko, A.A.; Nikitin, A.V. On the use of methane-hydrogen mixtures in internal combustion engines. Oil Gas Chem. 2018, 3–4, 5–17. [Google Scholar] [CrossRef]
- Westbrook, C.K.; Sjöberg, M.; Cernansky, N.P. A new chemical kinetic method of determining RON and MON values for single component and multicomponent mixtures of engine fuels. Combust. Flame 2018, 195, 50–62. [Google Scholar] [CrossRef]
- Yadav, K.; Anirbid, S. Hydrogen compressed natural gas and liquefied compressed natural gas: Fuels for future. PDPU J. Energy Manag. 2017, 2, 29–33. Available online: https://www.pdpu.ac.in/downloads/3%20Hydrogen-Compressed-Natural-Gas.pdf (accessed on 14 January 2022).
- Di Sarli, V.; Di Benedetto, A.; Long, E.J.; Hargrave, G.K. Time-Resolved Particle Image Velocimetry of dynamic interactions between hydrogen-enriched methane/air premixed flames and toroidal vortex structures. Int. J. Hydrogen Energy 2012, 37, 16201–16213. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Agreda, A.; Di Sarli, V.; Di Bene-detto, A. Bifurcation analysis of the effect of hydrogen addition on the dynamic behavior of lean premixed pre-vaporized ethanol combustion. Int. J. Hydrogen Energy 2012, 37, 6922–6932. [Google Scholar] [CrossRef]
- Moreno, F.; Muñoz, M.; Magén, O.; Monné, C.; Arroyo, J. Modifications of a spark ignition engine to operate with hydrogen and methane blends. Renew. Energy Power Qual. J. 2010, 1, 421–426. [Google Scholar] [CrossRef]
- Nagalingam, B.; Duebel, F.; Schmillen, K. Performance study using natural gas, hydrogensupplemented natural gas and hydrogen in AVL research engine. Int. J. Hydrogen Energy 1983, 8, 715–720. [Google Scholar] [CrossRef]
- De Vries, H.; Mokhov, A.V.; Levinsky, H.B. The impact of natural gas/hydrogen mixtures on the performance of end-use equipment: Interchangeability analysis for domestic appliances. Appl. Energy 2017, 208, 1007–1019. [Google Scholar] [CrossRef]
- Zhao, Y.; McDonell, V.; Samuelsen, S. Influence of hydrogen addition to pipeline natural gas on the combustion performance of a cooktop burner. Int. J. Hydrogen Energy 2019, 44, 12239–12253. [Google Scholar] [CrossRef]
- Arrieta, C.E.; Amell, A.A. Combustion analysis of an equimolar mixture of methane and syngas in a surface-stabilized combustion burner for household appliances. Fuel 2014, 137, 11–20. [Google Scholar] [CrossRef]
- Imran, S.; Emberson, D.R.; Ihracska, B.; Wen, D.S.; Crookes, R.J.; Korakianitis, T. Effect of pilot fuel quantity and type on performance and emissions of natural gas and hydrogen based combustion in a compression ignition engine. Int. J. Hydrogen Energy 2014, 39, 5163–5175. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, H.; Liew, C.; Liu, S.; Gatts, T.; Wayne, S.; Shade, B.; Clark, N. An experimental investigation of H2 emissions characteristics of heavy-duty H2-diesel dual fuel engine. Int. J. Hydrogen Energy 2011, 36, 12015–12024. [Google Scholar] [CrossRef]
- Christodoulou, F.; Megaritis, A. Experimental investigation of the effects of separate hydrogen and nitrogen addition on the emissions and combustion of a diesel engine. Int. J. Hydrogen Energy 2013, 38, 10126–10140. [Google Scholar] [CrossRef]
- Niculae, A.L.; Miron, L.; Chiriac, R. On the possibility to simulate the operation of a SI engine using alternative gaseous fuels. Energy Rep. 2020, 6, 167–176. [Google Scholar] [CrossRef]
- Bade Shrestha, S.O.; Karim, G.A. Hydrogen as an additive to methane for spark ignition engine applications. Int. J. Hydrogen Energy 1999, 24, 577–586. [Google Scholar] [CrossRef]
- Dieguez, P.M.; Urroz, J.C.; Marcelino-Sadaba, S.; Perez-Ezcurdia, A.; Benito-Amurrio, M.; Sainz, D. Experimental study of the performance and emission characteristics of an adapted commercial four-cylinder spark ignition engine running on hydrogen-methane mixtures. Appl. Energy 2014, 113, 1068–1076. [Google Scholar] [CrossRef]
- Van Blarigan, P.; Keller, J.O. A hydrogen fuelled internal combustion engine designed for single speed/power operation. Int. J. Hydrogen Energy 1998, 23, 603–609. [Google Scholar] [CrossRef]
- Karim, G.A.; Wierzba, I.; Al-Alousi, Y. Methane-hydrogen mixtures as fuels. Int. J. Hydrogen Energy 1996, 21, 625–631. [Google Scholar] [CrossRef]
- Klell, M.; Eichlseder, H.; Sartory, M. Mixtures of hydrogen and methane in the internal combustion engine—Synergies, potential and regulations. Int. J. Hydrogen Energy 2012, 37, 11531–11540. [Google Scholar] [CrossRef]
- Das, L.M.; Polly, M. Experimental Evaluation of a Hydrogen Added Natural Gas (HANG) Operated SI Engine; SAE Technical Paper; The Automotive Research Association of India: Pune, India, 2005; 2005-26-029. [Google Scholar] [CrossRef]
- Wallner, T.; Ng, H.; Peters, R. The Effects of Blending Hydrogen with Methane on Engine Operation, Efficiency, and Emissions; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2007; 2007-01-0474. [Google Scholar] [CrossRef]
- Anstrom, J.R.; Collier, K. Blended hydrogen–natural gas-fueled internal combustion engines and fueling infrastructure. Compend. Hydrog. Energy 2016, 3, 219–232. [Google Scholar] [CrossRef]
- Karczewski, M.; Chojnowski, J.; Szamrej, G. A Review of Low-CO2 Emission Fuels for a Dual-Fuel RCCI Engine. Energies 2021, 14, 5067. [Google Scholar] [CrossRef]
- Talibi, M.; Ramanarayanan, B.; Ladommatos, N. Influence of combusting methane-hydrogen mixtures on compression–ignition engine exhaust emissions and in-cylinder gas composition. Int. J. Hydrogen Energy 2017, 42, 2381–2396. [Google Scholar] [CrossRef]
- Tangoz, S.; Kahraman, N.; Akansu, S.O. The effect of hydrogen on the performance and emissions of an SI engine having a high compression ratio fuelled by compressed natural gas. Int. J. Hydrogen Energy 2017, 42, 25766–25780. [Google Scholar] [CrossRef]
- Agarwal, J.; Alam, M.; Jaiswal, A.; Yadav, K.; Kumar, N. Comparative Study of Emissions and Performance of Hythane Boosted SI Engine Powered by Gasoline-Methanol Blend and Gasoline-Ethanol Blend//SAE 2016 World Congress and Exhibition; Technical Paper; SAE International: Warrendale, PA, USA, 2016; 8p, 2016-01-1281. [Google Scholar] [CrossRef]
- Yadav, B.K.; Soni, S.L.; Sharma, D.; Sharma, P.K. Performance and emission analysis of constant speed SI engine operated on hythane (HCNG). Int. J. Sci. Technol. 2017, 3, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Kaiadi, M.; Tunestal, P.; Johansson, B. How hythane with 25% hydrogen can affect the combustion in a 6-cylinder natural-gas engine. SAE Int. J. Fuels Lubr. 2010, 3, 47–59. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Prasad, R.K. Laser ignition of hydrogen enriched compressed natural gas (HCNG) fueled supercharged engine. In Proceedings of the Laser Ignition Conference 2017, Bucharest, Romania, 20–23 June 2017. OSA Technical Digest (online) (Optical Society of America, 2017), paper LThA3. [Google Scholar] [CrossRef]
- Sofianopoulos, A.; Assanis, D.N.; Mamalis, S. Effects of Hydrogen Addition on Automotive Lean-Burn Natural Gas Engines: Critical Review. J. Energy Eng. 2016, 142, E4015010. [Google Scholar] [CrossRef]
- Hora, T.S.; Agarwal, A.K. Compressed natural gas and hythane for on-road passenger and commercial vehicles. In Prospects of Alternative Transportation Fuels; Springer: Singapore, 2018; pp. 79–106. [Google Scholar] [CrossRef]
- Gómez-Montoya, J.P.; Cacua-Madero, K.P.; Iral-Galeano, L.; Amell-Arrieta, A.A. Effect of biogas enriched with hydrogen on the operation and performance of a diesel-biogas dual engine. CT&F-Cienc. Tecnologia y Futuro 2013, 5, 61–72. [Google Scholar]
- Hinton, N.; Stone, R. Laminar burning velocity measurements of methane and carbon dioxide mixtures (biogas) over wide ranging temperatures and pressures. Fuel 2014, 116, 743–750. [Google Scholar] [CrossRef]
- Yadav, V.K.; Ray, A.; Ravi, M.R. Experimental and computational investigation of the laminar burning velocity of hydrogen-enriched biogas. Fuel 2019, 235, 810–821. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, X. Experimental study on flame stability of biogas/hydrogen combustion. Int. J. Hydrogen Energy 2019, 44, 5607–5614. [Google Scholar] [CrossRef]
- Mariani, A.; Unich, A.; Minale, M. Combustion of Hydrogen Enriched Methane and Biogases Containing Hydrogen in a Controlled Auto-Ignition Engine. Appl. Sci. 2018, 8, 2667. [Google Scholar] [CrossRef] [Green Version]
- Amaduzzi, R.; Ferrarotti, M.; Parente, A. Strategies for Hydrogen-Enriched Methane Flameless Combustion in a Quasi-Industrial Furnace. Front. Energy Res. 2021, 8, 590300. [Google Scholar] [CrossRef]
- Lister, J.; Poulsen, R.T.; Ponte, S. Orchestrating transnational environmental governance in maritime shipping. Glob. Environ. Change 2015, 34, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Balcombe, P.; Brierley, J.; Lewis, C.; Skatvedt, L.; Speiers, J.; Hawkes, A.; Staffell, I. How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Convers. Manag. 2019, 182, 72–88. [Google Scholar] [CrossRef]
- Zhao, R.; Xu, L.; Su, X.; Feng, S.; Li, C.; Tan, Q.; Wang, Z. A numerical and experimental study of marine hydrogen–natural gas–diesel tri–fuel engines. Pol. Marit. Res. 2020, 4, 80–90. [Google Scholar] [CrossRef]
- Arat, H.; Aydin, K.; Baltacioğlu, E.; Yasar, E.; Baltacioglu, M.; Conker, C.; Burgaç, A. A review of hydrogen-enriched compressed natural gas (HCNG)-fuel in diesel engines. J. Macro Trends Energy Sustain. (JMES) 2013, 1, 115–122. [Google Scholar]
- Premkartikkumar, S.R.; Gopidesi, R.K. Review on Effects of Performance, Emission and Combustion Characteristics of Emulsified Fuel in Bifuel Engine. Prog. Ind. Ecol. Int. J. 2018, 12, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Premkartikkumar, S.R.; Annamalai, K.; Pradeepkumar, A.R. Impact of ambient air temperature and injection timing on reduction of engine out emissions of DI diesel engine operating under the influence of oxygen enriched hydrogen gas. Int. J. Oil Gas Coal Technol. 2015, 9, 109–127. [Google Scholar] [CrossRef]
- Yon, S.; Sautet, J.C. Flame lift-off height, velocity flow and mixing of hythane in oxy-combustion in a burner with two separated jets. Appl. Therm. Eng. 2012, 32, 83–92. [Google Scholar] [CrossRef]
- Kumma, N.; Gopidesi, R.K.; Rao, T.R.; Kumar, K.M.; Premkartikkumar, S.R. Experimental Investigation on Diesel Engine. Fuelled with Hythane Gas. Int. J. Mech. Eng. Technol. 2019, 10, 571–575. [Google Scholar]
- Sandalc, T.; Işın, Ö.; Galata, S.; Karagöz, Y.; Güler, I. Effect of hythane enrichment on performance, emission and combustion characteristics of an ci engine. Int. J. Hydrogen Energy 2019, 44, 3208–3220. [Google Scholar] [CrossRef]
- Chugh, S.; Posina, V.A.; Sonkar, K.; Srivatsava, U.; Sharma, A.; Acharya, G.K. Modeling & simulation study to assess the effect of CO2 on performance and emissions characteristics of 18% HCNG blend on a light duty SI engine. Int. J. Hydrogen Energy 2016, 41, 6155–6161. [Google Scholar] [CrossRef]
- Wojtowicz, R. An analysis of the effects of hydrogen addition to natural gas on the work of gas appliances. Naft. -Gaz 2019, 8, 465–473. [Google Scholar] [CrossRef]
- Xiang, L.; Jiang, H.; Ren, F.; Chu, H.; Wang, P. Numerical study of the physical and chemical effects of hydrogen addition on laminar premixed combustion characteristics of methane and ethane. Int. J. Hydrogen Energy 2020, 45, 20501–20514. [Google Scholar] [CrossRef]
- Costa, M.; Piazzullo, D.; Dolce, A. Hydrogen addition to natural gas in cogeneration engines: Optimization of performances through numerical modeling. Front. Mech. Eng. 2021, 67, 680193. [Google Scholar] [CrossRef]
- Stylianidis, N.; Azimov, U.; Birkett, M. Investigation of the Effect of Hydrogen and Methane on Combustion of Multicompoment Syngas Mixtures using a Constructed Reduced Chemical Kinetics Mechanism. Energies 2019, 12, 2442. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Huang, Z.; Tang, C.; Miao, H.; Wang, X. Numerical study of the effect of hydrogen addition on methane-air mixtures combustion. Int. J. Hydrogen Energy 2009, 34, 1084–1096. [Google Scholar] [CrossRef]
- Litvinenko, V.S.; Tsvetkov, P.S.; Dvoynikov, M.V.; Buslaev, G.V. Barriers to implementation of hydrogen initiatives in the context of global energy sustainable development. J. Min. Inst. 2020, 244, 428–438. [Google Scholar] [CrossRef]
- Hydrogen Pipeline Systems. Doc 121/14. European Industrial Gases Association AISBL. Available online: https://www.eiga.eu/ct_documents/doc121-pdf/ (accessed on 19 March 2022).
- Melaina, M.W.; Sozinova, O.; Penev, M. Blending hydrogen into natural gas pipeline networks: A review of key issues. Durability 2013, 1, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Lee, A.; Parker, N.; Scheitrum, D.; Jaffe, A.M.; Dominguez-Faus, R.; Medlock, K. Geospatial, temporal and economic analysis of alternative fuel infrastructure: The case of freight and US natural gas markets. Energy J. 2018, 38, 199–230. [Google Scholar] [CrossRef]
- Schiebahn, S.; Grube, T.; Robinius, M.; Tietze, V.; Kumar, B.; Stolten, D. Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. Int. J. Hydrogen Energy 2015, 40, 4285–4294. [Google Scholar] [CrossRef]
- Çeper, B.A. Use of hydrogen-methane blends in internal combustion engines. In Hydrogen Energy—Challenges and Perspectives; Dragica Minic; IntechOpen: London, UK, 2012; Available online: https://www.intechopen.com/chapters/40243 (accessed on 19 March 2022). [CrossRef] [Green Version]
- Hankinson, G.; Mathurkar, H.; Lowesmith, B.J. Ignition Energy and Ignition Probability of Methane-Hydrogen-Air Mixtures. Conference Paper 2009. Available online: http://conference.ing.unipi.it/ichs2009/images/stories/papers/125.pdf (accessed on 19 March 2022).
- Altfeld, K.; Pinchbeck, D. Admissible Hydrogen Concentrations in Natural Gas Systems; DIV Deutscher Industrieverlag GmbH: Munich, Germany, 2013; Reprint: Gas for Energy 03/2013; ISSN 2192-158X. Available online: https://gerg.eu/g21/wp-content/uploads/2019/10/HIPS_Final-Report.pdf (accessed on 19 March 2022).
- Makaryan, I.A.; Sedov, I.V. The State and Development Prospects of the Global Hydrogen Energy Sector. Russ. J. Gen. Chem. 2021, 91, 1912–1928. [Google Scholar] [CrossRef]
- Injecting Hydrogen in Natural Gas Grids Could Provide Steady Demand the Sector Needs to Develop. Electric Power. Natural Gas (19 May 2020). Insight Blog. Available online: https://www.spglobal.com/platts/en/market-insights/blogs/natural-gas/051920-injecting-hydrogen-in-natural-gas-grids-could-provide-steady-demand-the-sector-needs-to-develop (accessed on 21 December 2021).
- Birkitt, K.; Loo-Morrey, M.; Sanchez, C.; O’Sullivan, L. Materials aspects associated with the addition of up to 20 mol% hydrogen into an existing natural gas distribution network. Int. J. of Hydrogen Energy 2021, 46, 12290–12299. [Google Scholar] [CrossRef]
- Jaffe, A.M.; Dominguez-Faus, R.; Ogden, J.M.; Parker, N.C.; Scheitrum, D.; McDonald, Z.; Fan, Y.; Durbin, T.; Karavalakis, G.; Wilcock, J.; et al. The Potential to Build Current Natural Gas Infrastructure to Accommodate the Future Conversion to Near-Zero Transportation Technology; Institute of Transportation Studies, University of California: Davis, CA, USA, 2017; (Research Report UCD-ITS-RR-17-04); Available online: https://its.ucdavis.edu/research/publications/ (accessed on 19 January 2022).
- Could Hydrogen Piggyback on Natural Gas Infrastructure? 17 March 2016. Networks. Available online: https://networks.online/gas/could-hydrogen-piggyback-on-natural-gas-infrastructure/ (accessed on 19 January 2022).
- Ogden, J.; Jaffe, F.M.; Scheitrum, D.; McDonald, Z.; Miller, M. Natural gas as a bridge to hydrogen transportation fuel: Insights from the literature. Energy Policy 2018, 115, 317–329. [Google Scholar] [CrossRef]
- Wahl, J.; Kallo, J. Quantitative valuation of hydrogen blending in European gas grids and its impact on the combustion process of large-bore gas engines. Int. J. Hydrogen Energy 2020, 45, 32534–32546. [Google Scholar] [CrossRef]
- Kong, M.; Feng, S.; Xia, Q.; Chen, C.; Pan, Z.; Gao, Z. Investigation of mixing behavior of hydrogen blended to natural gas in gas network. Sustainability 2021, 13, 4255. [Google Scholar] [CrossRef]
- Kuczynski, S.; Łaciak, M.; Olijnyk, A.; Szurlej, A.; Włodek, T. Thermodynamic and Technical Issues of Hydrogen and Methane-Hydrogen Mixtures Pipeline Transmission. Energies 2019, 12, 569. [Google Scholar] [CrossRef] [Green Version]
- Abd, A.A.; Naji, S.Z.; Thian, T.C.; Othman, M.R. Evaluation of hydrogen concentration effect on the natural gas properties and flow performance. Int. J. of Hydrogen Energy 2021, 46, 1974–1983. [Google Scholar] [CrossRef]
- Nordio, M.; Wassie, S.A.; Van Sint Annaland, M.; Pacheco Tanaka, D.A.; Viviente Sole, J.L.; Gallucci, F. Techno-economic evaluation on a hybrid technology for low hydrogen concentration separation and purification from natural gas grid. Int. J. Hydrogen Energy 2021, 46, 23417–23435. [Google Scholar] [CrossRef]
- Ibeh, B.; Gardner, C.; Ternan, M. Separation of hydrogen from a hydrogen/methane mixture using a PEM fuel cell. Int. J. Hydrogen Energy 2007, 32, 908–914. [Google Scholar] [CrossRef]
- Wagner, K.; Tiwari, P.; Swiegers, G.F.; Wallace, G.G. An electrochemical cell with Gortex-based electrodes capable of extracting pure hydrogen from highly dilute hydrogen–methane mixtures. Energy Environ. Sci. 2018, 11, 172–184. [Google Scholar] [CrossRef] [Green Version]
- Vermaak, L.; Neomagus, H.W.J.P.; Bessarabov, D.G. Hydrogen Separation and Purification from Various Gas Mixtures by Means of Electrochemical Membrane Technology in the Temperature Range 100–160 °C. Membranes 2021, 11, 282. [Google Scholar] [CrossRef]
- Qianqian, X.; Wu, M.; Xiao, C.Z.; Puru, J. Co-mixing hydrogen and methane may double the energy storage capacity. J. Mater. Chem. A 2018, 6, 8916–8922. [Google Scholar] [CrossRef]
- Dunikov, D.O.; Blinov, D.V. Use of methane-hydrogen mixtures for energy accumulation. J. Phys. Conf. Ser. 2019, 1370, 012033. [Google Scholar] [CrossRef]
- Makaryan, I.A.; Sedov, I.V.; Maksimov, A.L. Hydrogen Storage Using Liquid Organic Carriers. Russ. J. Appl. Chem. 2020, 93, 1815–1830. [Google Scholar] [CrossRef]
- Middha, P.; Engel, D.; Hansen, O.R. Can the addition of hydrogen to natural gas reduce the explosion risk? Int. J. Hydrogen Energy 2011, 36, 2628–2636. [Google Scholar] [CrossRef]
- Parfomak, P.W. Pipeline Transportation of Hydrogen: Regulation, Research, and Policy. Pipeline Transportation of Hydrogen: Regulation, Research, and Policy. Congressional Research Service (CRS). CRS Report R46700. 2 March 2021. Available online: https://crsreports.congress.gov/product/pdf/R/R46700 (accessed on 19 March 2022).
- Witkowski, A.; Rusin, A.; Majkut, M.; Stolecka, K. Comprehensive analysis of hydrogen compression and pipeline transportation with thermodynamics and safety aspects. Energy 2017, 141, 2508–2518. [Google Scholar] [CrossRef]
- Marangon, A.; Carcassi, M.N. Hydrogen–methane mixtures: Dispersion and stratification studies. Int. J. Hydrogen Energy 2014, 39, 6160–6168. [Google Scholar] [CrossRef]
- Salzano, E.; Cammarota, F.; Di Benedetto, A.; Di Sarli, V. Explosion behavior of hydrogen–methane/air mixtures. J. Loss Prev. Process Ind. 2012, 25, 443–447. [Google Scholar] [CrossRef]
- Witkowski, A.; Rusin, A.; Majkut, M.; Stolecka, K. Analysis of compression and transport of the methane/hydrogen mixture in existing natural gas pipelines. Int. J. Press. Vessel. Pip. 2018, 166, 24–34. [Google Scholar] [CrossRef]
- Jia, J.; Chen, Y.; Che, G.; Zhu, J.; Wang, F.; Jia, P. Experimental study on the explosion characteristics of hydrogen-methane premixed gas in complex pipe networks. Sci. Rep. 2021, 11, 21204. [Google Scholar] [CrossRef]
- Jaworski, J.; Kułaga, P.; Blacharski, T. Study of the Effect of Addition of Hydrogen to Natural Gas on Diaphragm Gas Meters. Energies 2020, 13, 3006. [Google Scholar] [CrossRef]
Properties | Hydrogen | HCNG5 | CNG | Gasoline |
---|---|---|---|---|
Limits of flammability in air, (vol.%) | 4–75 | 5–35 | 5–15 | 1.0–7.6 |
Stoichiometric composition in air, (vol.%) | 29.53 | 22.8 | 9.48 | 1.76 |
Minimum energy for ignition in air, (mJ) | 0.02 | 0.21 | 0.29 | 0.24 |
Auto ignition temperature, (K) | 858 | 825 | 813 | 501–744 |
Flame temperature in air, (K) | 2318 | 2210 | 2148 | 2470 |
Burning velocity in NTP * air, (cm/s) | 325 | 110 | 45 | 37–43 |
Quenching gap in NTP air, (cm) | 0.064 | 0.152 | 0.203 | 0.2 |
Normalized flame emissivity | 1.0 | 1.5 | 1.7 | 1.7 |
Equivalent ration flammability limit in NTP air | 0.1–7.1 | 0.5–5.4 | 0.7–4 | 0.7–3.8 |
Methane number | 0 | 76 | 80 | - |
Properties | CNG | HCNG10 | HCNG20 | HCNG30 |
---|---|---|---|---|
H2 (% vol.) | 0 | 10 | 20 | 30 |
H2 (% mass) | 0 | 1.21 | 2.69 | 4.52 |
H2 (% energy) | 0 | 3.09 | 6.68 | 10.94 |
LHV * (MJkg−1) | 46.28 | 47.17 | 48.26 | 49.61 |
LHV (MJNm−3) | 37.16 | 34.50 | 31.85 | 29.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makaryan, I.A.; Sedov, I.V.; Salgansky, E.A.; Arutyunov, A.V.; Arutyunov, V.S. A Comprehensive Review on the Prospects of Using Hydrogen–Methane Blends: Challenges and Opportunities. Energies 2022, 15, 2265. https://doi.org/10.3390/en15062265
Makaryan IA, Sedov IV, Salgansky EA, Arutyunov AV, Arutyunov VS. A Comprehensive Review on the Prospects of Using Hydrogen–Methane Blends: Challenges and Opportunities. Energies. 2022; 15(6):2265. https://doi.org/10.3390/en15062265
Chicago/Turabian StyleMakaryan, Iren A., Igor V. Sedov, Eugene A. Salgansky, Artem V. Arutyunov, and Vladimir S. Arutyunov. 2022. "A Comprehensive Review on the Prospects of Using Hydrogen–Methane Blends: Challenges and Opportunities" Energies 15, no. 6: 2265. https://doi.org/10.3390/en15062265