# On the Dynamic Connectedness of the Stock, Oil, Clean Energy, and Technology Markets

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Review of Existing Studies

## 3. Methodology

## 4. Data

## 5. Results and Discussion

## 6. Robustness Analysis

## 7. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Reuters. No Oil Demand to Peak in Three Years, Says Energy Adviser DNV GL. 2019. Available online: https://www.reuters.com/article/us-oil-demand-dnv-gl-idUSKCN1VV2UQ (accessed on 12 June 2021).
- Tao, Z.; Li, M. System dynamics model of Hubbert Peak for China’s oil. Energy Policy
**2007**, 35, 2281–2286. [Google Scholar] [CrossRef] - Crampton, J. How does the stock market value the renewable energy sector: A public announcement analysis and test of the efficient market hypothesis. J. Environ. Resour. Econ. Colby
**2015**, 2, 56. [Google Scholar] - Maji, I.K. Does clean energy contributes to economic growth? Evidence from Nigeria. Energy Rep.
**2015**, 1, 145–150. [Google Scholar] [CrossRef][Green Version] - Bondia, R.; Ghosh, S.; Kanjilal, K. International crude oil prices and the stock prices of clean energy and technology companies: Evidence from non-linear cointegration tests with unknown structural breaks. Energy
**2016**, 101, 558–565. [Google Scholar] [CrossRef] - Reboredo, J.C.; Ugolini, A. The impact of energy prices on clean energy stock prices. A multivariate quantile dependence approach. Energy Econ.
**2018**, 76, 136–152. [Google Scholar] [CrossRef] - Diebold, F.X.; Yilmaz, K. Better to give than to receive: Predictive directional measurement of volatility spillovers. Int. J. Forecast.
**2012**, 28, 57–66. [Google Scholar] [CrossRef][Green Version] - Ajadi, T.; Cuming, V.; Boyle, R.; Strahan, D.; Kimmel, M.; Logan, M.; McCrone, A. Global Trends in Renewable Energy Investment 2020. 2020. Available online: https://www.fs-unep-centre.org/wp-content/uploads/2020/06/GTR_2020.pdf (accessed on 30 August 2021).
- Kumar, S.; Managi, S.; Matsuda, A. Stock prices of clean energy firms, oil and carbon markets: A vector autoregressive analysis. Energy Econ.
**2012**, 34, 215–226. [Google Scholar] [CrossRef] - Henriques, I.; Sadorsky, P. Oil prices and the stock prices of alternative energy companies. Energy Econ.
**2008**, 30, 998–1010. [Google Scholar] [CrossRef] - Karanfil, F. How many times again will we examine the energy-income nexus using a limited range of traditional econometric tools? Energy Policy
**2009**, 37, 1191–1194. [Google Scholar] [CrossRef] - Sadorsky, P. The impact of financial development on energy consumption in emerging economies. Energy Policy
**2010**, 38, 2528–2535. [Google Scholar] [CrossRef] - Sadorsky, P. Financial development and energy consumption in Central and Eastern European frontier economies. Energy Policy
**2011**, 39, 999–1006. [Google Scholar] [CrossRef] - Razmi, S.F.; Bajgiran, B.R.; Behname, M.; Salari, T.E.; Razmi, S.M.J. The relationship of renewable energy consumption to stock market development and economic growth in Iran. Renew. Energy
**2020**, 145, 2019–2024. [Google Scholar] [CrossRef] - Sadorsky, P. Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies. Energy Econ.
**2012**, 34, 248–255. [Google Scholar] [CrossRef] - Paramati, S.R.; Ummalla, M.; Apergis, N. The effect of foreign direct investment and stock market growth on clean energy use across a panel of emerging market economies. Energy Econ.
**2016**, 56, 29–41. [Google Scholar] [CrossRef] - Inchauspe, J.; Ripple, R.D.; Trück, S. The dynamics of returns on renewable energy companies: A state-space approach. Energy Econ.
**2015**, 48, 325–335. [Google Scholar] [CrossRef] - Ahmad, W. On the dynamic dependence and investment performance of crude oil and clean energy stocks. Res. Int. Bus. Financ.
**2017**, 42, 376–389. [Google Scholar] [CrossRef] - Nasreen, S.; Tiwari, A.K.; Eizaguirre, J.C.; Wohar, M.E. Dynamic connectedness between oil prices and stock returns of clean energy and technology companies. J. Clean. Prod.
**2020**, 260, 121015. [Google Scholar] [CrossRef] - Managi, S.; Okimoto, T. Does the price of oil interact with clean energy prices in the stock market? Jpn. World Econ.
**2013**, 27, 1–9. [Google Scholar] [CrossRef][Green Version] - Kocaarslan, B.; Soytas, U. Asymmetric pass-through between oil prices and the stock prices of clean energy firms: New evidence from a nonlinear analysis. Energy Reports
**2019**, 5, 117–125. [Google Scholar] [CrossRef] - Batrancea, L.; Rus, M.I.; Masca, E.S.; Morar, I.D. Fiscal Pressure as a Trigger of Financial Performance for the Energy Industry: An Empirical Investigation across a 16-Year Period. Energies
**2021**, 14, 3769. [Google Scholar] [CrossRef] - Diebold, F.X.; Yilmaz, K. Measuring financial asset return and volatility spillovers, with application to global equity markets. Econ. J.
**2009**, 119, 158–171. [Google Scholar] [CrossRef][Green Version] - Koop, G.; Pesaran, M.H.; Potter, S.M. Impulse response analysis in nonlinear multivariate models. J. Econom.
**1996**, 74, 119–147. [Google Scholar] [CrossRef] - Pesaran, H.H.; Shin, Y. Generalized impulse response analysis in linear multivariate models. Econ. Lett.
**1998**, 58, 17–29. [Google Scholar] [CrossRef] - Balcilar, M.; Ozdemir, Z.A.; Ozdemir, H. Dynamic return and volatility spillovers among S&P 500, crude oil, and gold. Int. J. Financ. Econ.
**2018**, 26, 153–170. [Google Scholar] - Lütkepohl, H. New Introduction to Multiple Time Series Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005; ISBN 3540277528. [Google Scholar]
- Ferrer, R.; Shahzad, S.J.H.; López, R.; Jareño, F. Time and frequency dynamics of connectedness between renewable energy stocks and crude oil prices. Energy Econ.
**2018**, 76, 1–20. [Google Scholar] [CrossRef] - Elie, B.; Naji, J.; Dutta, A.; Uddin, G.S. Gold and crude oil as safe-haven assets for clean energy stock indices: Blended copulas approach. Energy
**2019**, 178, 544–553. [Google Scholar] [CrossRef] - Barndorff-Nielsen, O.E.; Shephard, N. Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. R. Stat. Soc. Ser. B Stat. Methodol.
**2002**, 64, 253–280. [Google Scholar] [CrossRef] - Balcilar, M.; Ozdemir, Z.A. The causal nexus between oil prices and equity market in the US: A regime switching model. Energy Econ.
**2013**, 39, 271–282. [Google Scholar] [CrossRef] - Balcilar, M.; Bekiros, S.; Gupta, R. The role of news-based uncertainty indices in predicting oil markets: A hybrid nonparametric quantile causality method. Empir. Econ.
**2017**, 53, 879–889. [Google Scholar] [CrossRef][Green Version] - Saeed, T.; Bouri, E.; Alsulami, H. Extreme return connectedness and its determinants between clean/green and dirty energy investments. Energy Econ.
**2020**, 96, 105017. [Google Scholar] [CrossRef] - Engle, R.F.; Manganelli, S. CAViaR: Conditional autoregressive value at risk by regression quantiles. J. Bus. Econ. Stat.
**2004**, 22, 367–381. [Google Scholar] [CrossRef] - Kouretas, G.P.; Zarangas, L. Conditional Autoregressive Value at Risk by Regression Quantiles: Estimating Market Risk for Major Stock Markets. 2005. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.710.4483&rep=rep1&type=pdf (accessed on 30 August 2021).
- Cecchetti, S.G.; Li, H. Measuring the Impact of Asset Price Booms Using Quantile Vector Autoregressions; Brandeis University: Waltham, MA, USA, 2008; Available online: https://people.brandeis.edu/~cecchett/WPpdf/2008_QVAR_HLi.pdf (accessed on 30 August 2021).
- Xu, Q.; Liu, X.; Jiang, C.; Yu, K. Quantile autoregression neural network model with applications to evaluating value at risk. Appl. Soft Comput.
**2016**, 49, 1–12. [Google Scholar] [CrossRef][Green Version] - Chavleishvili, S.; Manganelli, S. Quantile impulse response functions. Eur. Cent. Bank Manuscr. 2017. Available online: https://www.cb.cityu.edu.hk/ef/doc/2016%20Sofie/Papers/94_Manganelli_Quantile%20Impulse%20Response%20Functions.pdf (accessed on 30 August 2021).

**Figure 1.**Time series plot of the clean energy (CE), S&P 500 (ST), technology (TE), and crude oil (WTI) series. The y-axis for WTI represents the price per barrel in dollars, and the x-axis shows the sample period. All of the other three assets are indexes, with the y-axis denoting the index value and the x-axis denoting the time.

**Figure 2.**Rolling total volatility spillover index estimates among the clean energy (CE), S&P 500 (ST), technology (TE), and crude oil (WTI) series. Note: the x-axis indicates the time and the y-axis shows the percentage change in the total spillover index.

**Figure 3.**Directional spillovers TO among the clean energy (CE), S&P 500 (ST), technology (TE), and crude oil (WTI) series. Note: The x-axis indicates the time and the y-axis shows the percentage change in the directional spillover TO.

**Figure 4.**Directional spillovers FROM among the clean energy (CE), S&P 500 (ST), technology (TE), and crude oil (WTI) series. Note: The x-axis indicates the time and the y-axis shows the percentage change in the directional spillover FROM.

**Figure 5.**Net spillover among the clean energy (CE), S&P 500 (ST), technology (TE), and crude oil (WTI) series. Note: Positive values indicate transmitting spillover while negative values indicate receivers of spillover. The x-axis indicates the time.

**Figure 6.**Net pairwise spillover among clean energy (CE), S&P 500 (ST), technology (TE), and crude oil (WTI) series. Note: Positive values indicate transmitting spillover while negative values show receivers of spillover. The x-axis indicates the time.

**Figure 7.**Comparing the total volatility spillovers between the linear VAR (mean) and different quantiles by the QVAR model among the clean energy (CE), S&P 500 (ST), technology (TE), and crude oil (WTI) series. Note: The x-axis indicates the time and the y-axis shows the percentage change in the total spillover index in the mean and different quantiles.

**Table 1.**Descriptive statistics of realized volatility among the clean energy (CE), S&P 500 (ST), technology (TE), and crude oil (WTI) series.

Clean Energy | S&P 500 | Technology | WTI | |
---|---|---|---|---|

Mean | 0.034 | 0.018 | 0.024 | 0.041 |

Median | 0.030 | 0.014 | 0.020 | 0.036 |

Maximum | 0.155 | 0.103 | 0.104 | 0.152 |

Minimum | 0.015 | 0.006 | 0.009 | 0.014 |

SD | 0.018 | 0.013 | 0.013 | 0.020 |

Skewness | 3.16 | 3.19 | 2.67 | 2.21 |

Kurtosis | 17.29 | 17.30 | 13.34 | 9.90 |

CE | TE | WTI | ST | Received | |
---|---|---|---|---|---|

CE | 32.284 | 25.914 | 8.207 | 33.595 | 67.716 |

TE | 22.558 | 32.700 | 11.162 | 33.580 | 67.300 |

WTI | 10.555 | 16.352 | 52.570 | 20.524 | 47.430 |

ST | 24.324 | 28.675 | 10.675 | 36.326 | 63.674 |

Transmitted | 57.437 | 70.941 | 30.043 | 87.699 | 246.120 |

Including own | 89.721 | 103.641 | 82.613 | 124.025 | Spillover index |

NET spillovers | −10.279 | 3.641 | −17.387 | 24.025 | 61.530% |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Attarzadeh, A.; Balcilar, M.
On the Dynamic Connectedness of the Stock, Oil, Clean Energy, and Technology Markets. *Energies* **2022**, *15*, 1893.
https://doi.org/10.3390/en15051893

**AMA Style**

Attarzadeh A, Balcilar M.
On the Dynamic Connectedness of the Stock, Oil, Clean Energy, and Technology Markets. *Energies*. 2022; 15(5):1893.
https://doi.org/10.3390/en15051893

**Chicago/Turabian Style**

Attarzadeh, Amirreza, and Mehmet Balcilar.
2022. "On the Dynamic Connectedness of the Stock, Oil, Clean Energy, and Technology Markets" *Energies* 15, no. 5: 1893.
https://doi.org/10.3390/en15051893