Energy Consumption Linkages of the Chinese Construction Sector
Abstract
:1. Introduction
2. Methodology
2.1. Energy Consumption Input–Output Model
2.2. Linkage Analysis of Energy Consumption by HEM
2.3. Linkage Analysis of Energy Consumption by MHEM
3. Empirical Analysis
3.1. Data Source and Processing
3.2. Direct and Indirect Energy Consumption
3.3. Linkage of Energy Consumption
3.4. Components of VICE
3.5. Total of Energy Net Flow (TENF)
3.6. Net Flow of Energy Consumption
4. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhong, H.; Wang, J.J.; Jia, H.J.; Mu, Y.F.; Lv, S.L. Vector field-based support vector regression for building energy consumption prediction. Appl. Energy 2019, 242, 403–414. [Google Scholar] [CrossRef]
- Amasyali, K.; El-Gohary, N.M. A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev. 2018, 81, 1192–1205. [Google Scholar] [CrossRef]
- Sattary, S.; Thorpe, D. Potential carbon emission reductions in Australian construction systems through bioclimatic principles. Sustain. Cities Soc. 2016, 23, 105–113. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, L.; Sun, J.D.; Wang, D.D.; Liu, C.L.; Luther, M.; Xu, Y.Q. Composition of energy outflows embodied in the gross exports of the construction sector. J. Clean. Prod. 2020, 248, 119296. [Google Scholar] [CrossRef]
- Tabrizikahou, A.; Nowotarski, P. Mitigating the energy consumption and the carbon emission in the building structures by optimization of the construction processes. Energies 2021, 14, 3287. [Google Scholar] [CrossRef]
- Mercader-Moyano, P.; Anaya-Durán, P.; Romero-Cortés, A. Eco-efficient ventilated facades based on circular economy for residential buildings as an improvement of energy conditions. Energies 2021, 14, 7266. [Google Scholar] [CrossRef]
- Cai, W.G.; Wu, Y.; Zhong, Y.; Ren, H. China building energy consumption: Situation, challenges and corresponding measures. Energy Policy 2009, 37, 2054–2059. [Google Scholar] [CrossRef]
- Yang, Y.C.; Liu, J.H.; Lin, Y.Y.; Li, Q.Y. The impact of urbanization on China’s residential energy consumption. Struct. Chang. Econ. Dyn. 2019, 49, 170–182. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, D.; Hu, S.; Guo, S.Y. Modelling of energy consumption and carbon emission from the building construction sector in China, a process-based LCA approach. Energy Policy 2019, 134, 110949. [Google Scholar] [CrossRef]
- Guo, S.; Zheng, S.P.; Hu, Y.H.; Hong, J.K.; Wu, X.F.; Tang, M.H. Embodied energy use in the global construction industry. Appl. Energy 2019, 256, 113838. [Google Scholar] [CrossRef]
- Jeong, K.; Hong, T.; Kim, J. Development of a CO2 emission benchmark for achieving the national CO2 emission reduction target by 2030. Energy Build. 2018, 158, 86–94. [Google Scholar] [CrossRef]
- Ionescu, L. Transitioning to a low-carbon economy: Green financial behavior, climate change mitigation, and environmental energy sustainability. Geopolit. Hist. Int. Relat. 2021, 13, 86–96. [Google Scholar]
- Ionescu, L. Leveraging green finance for low-carbon energy, sustainable economic development, and climate change mitigation during the COVID-19 Pandemic. Rev. Contemp. Philos. 2021, 20, 175–186. [Google Scholar]
- Pflugmann, F.; De Blasio, N. The geopolitics of renewable hydrogen in low-carbon energy markets. Geopolit. Hist. Int. Relat. 2020, 12, 9–44. [Google Scholar]
- Harrower, K. Networked and integrated urban technologies in sustainable smart energy systems. Geopolit. Hist. Int. Relat. 2020, 12, 45–51. [Google Scholar]
- Eysenck, G. Sensor-based big data applications and computationally networked urbanism in smart energy management systems. Geopolit. Hist. Int. Relat. 2020, 12, 52–58. [Google Scholar]
- Kovacova, M.; Lăzăroiu, G. Sustainable organizational performance, cyber-physical production networks, and deep learning-assisted smart process planning in industry 4.0-based manufacturing systems. Econ. Manag. Financ. Markets 2021, 16, 41–54. [Google Scholar]
- Xu, G.Y.; Wang, W.M. China’s energy consumption in construction and building sectors: An outlook to 2100. Energy 2020, 195, 117045. [Google Scholar] [CrossRef]
- Mi, Z.F.; Zheng, J.L.; Meng, J.; Shan, Y.L.; Zheng, H.R.; Ou, J.M.; Guan, D.B.; Wei, Y.M. China’s energy consumption in the new normal. Earths Future 2018, 6, 1007–1016. [Google Scholar] [CrossRef]
- Zhang, X.H.; Wu, L.Q.; Zhang, R.; Deng, S.H.; Zhang, Y.Z.; Wu, J.; Li, Y.W.; Lin, L.L.; Li, L.; Wang, Y.J.; et al. Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China. Renew. Sustain. Energy Rev. 2013, 18, 259–270. [Google Scholar] [CrossRef]
- Du, Q.; Huang, Y.D.; Xu, Y.D.; Bai, L.B.; Bao, T.N.; Wang, H.L. Benefit allocation in the construction supply chain considering carbon emissions. Pol. J. Environ. Stud. 2019, 28, 3697–3709. [Google Scholar] [CrossRef]
- Liu, B.S.; Yang, X.D.; Huo, T.F.; Shen, G.Q.; Wang, X.Q. A linguistic group decision-making framework for bid evaluation in mega public projects considering carbon dioxide emissions reduction. J. Clean. Prod. 2017, 148, 811–825. [Google Scholar] [CrossRef]
- Vasilca, I.-S.; Nen, M.; Chivu, O.; Radu, V.; Simion, C.-P.; Marinescu, N. the management of environmental resources in the construction sector: An empirical model. Energies 2021, 14, 2489. [Google Scholar] [CrossRef]
- Zhou, D.Q.; Zhang, L.; Zha, D.L.; Wu, F.; Wang, Q.W. Decoupling and decomposing analysis of construction industry’s energy consumption in China. Nat. Hazard. 2019, 95, 39–53. [Google Scholar] [CrossRef]
- Lai, X.D.; Lu, C.; Liu, J.X. A synthesized factor analysis on energy consumption, economy growth, and carbon emission of construction industry in China. Environ. Sci. Pollut. Res. 2019, 26, 13896–13905. [Google Scholar] [CrossRef]
- Huo, T.F.; Ren, H.; Zhang, X.L.; Cai, W.G.; Feng, W.; Zhou, N.; Wang, X. China’s energy consumption in the building sector: A statistical yearbook-energy balance sheet based splitting method. J. Clean. Prod. 2018, 185, 665–679. [Google Scholar] [CrossRef]
- Zhang, Y.; He, C.Q.; Tang, B.J.; Wei, Y.M. China’s energy consumption in the building sector: A life cycle approach. Energy Build. 2015, 94, 240–251. [Google Scholar] [CrossRef]
- Xue, X.L.; Wu, H.Q.; Zhang, X.L.; Dai, J.S.; Su, C. Measuring energy consumption efficiency of the construction industry: The case of China. J. Clean. Prod. 2015, 107, 509–515. [Google Scholar] [CrossRef]
- Hong, J.K.; Shen, G.Q.; Guo, S.; Xue, F.; Zheng, W. Energy use embodied in China’s construction industry: A multi-regional input-output analysis. Renew. Sustain. Energy Rev. 2016, 53, 1303–1312. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.Q.; An, H.Z.; Gao, X.Y.; Jia, X.L.; Liu, X.J. Indirect energy flow between industrial sectors in China: A complex network approach. Energy 2016, 94, 195–205. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, B.; Du, J.; Liu, C.L.; Wang, S. CO2 emission linkage analysis in global construction sectors: Alarming trends from 1995 to 2009 and possible repercussions. J. Clean. Prod. 2019, 221, 863–877. [Google Scholar] [CrossRef]
- Khanal, B.R.; Gan, C.; Becken, S. Tourism inter-industry linkages in the Lao PDR economy: An input-output analysis. Tour. Econ. 2014, 20, 171–194. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Geng, Y.; Lindner, S.; Zhao, H.Y.; Fujita, T.; Guan, D.B. Embodied energy use in China’s industrial sectors. Energy Policy 2012, 49, 751–758. [Google Scholar] [CrossRef]
- Lin, L.H.; Fan, Y.Z.; Xu, M.L.; Sun, C.W. A decomposition analysis of embodied energy consumption in China’s construction industry. Sustainability 2017, 9, 1583. [Google Scholar] [CrossRef] [Green Version]
- Deng, G.Y.; Zhang, Z.J. Research on the correlation effect of energy consumption in Chinese industries (industry) based on input-output decomposition model. Inquiry Econ. Issues 2017, 11, 95–102. [Google Scholar]
- Zhang, J.H.; Wang, H.M.; Ma, L.; Wang, J.; Wang, J.S.; Wang, Z.; Yue, Q. Structural path decomposition analysis of resource utilization in China, 1997–2017. J. Clean. Prod. 2021, 322, 129006. [Google Scholar] [CrossRef]
- Zhang, J.H.; Liu, Y.S.; Zhang, W.H.; Lin, X.Y. Study on the impact of energy poverty on energy efficiency of construction industry: Mediating role of energy consumption structure. Front. Energy Res. 2021, 9, 760895. [Google Scholar] [CrossRef]
- Karkacier, O.; Goktolga, Z.G. Input-output analysis of energy use in agriculture. Energy Convers. Manag. 2005, 46, 1513–1521. [Google Scholar] [CrossRef]
- Liu, H.T.; Xi, Y.M.; Guo, J.E.; Li, X. Energy embodied in the international trade of China: An energy input-output analysis. Energy Policy 2010, 38, 3957–3964. [Google Scholar] [CrossRef]
- Lam, K.L.; Kenway, S.J.; Lane, J.L.; Islam, K.M.N.; de Berc, R.B. Energy intensity and embodied energy flow in Australia: An input-output analysis. J. Clean. Prod. 2019, 226, 357–368. [Google Scholar] [CrossRef]
- Li, Z.; Pan, L.Y.; Fu, F.; Liu, P.; Ma, L.W.; Arnorelli, A. China’s regional disparities in energy consumption: An input-output analysis. Energy 2014, 78, 426–438. [Google Scholar] [CrossRef]
- Tian, Z.Z.; Fang, D.L.; Chen, B. Three-scale input-output analysis for energy and water consumption in urban agglomeration. J. Clean. Prod. 2020, 268. [Google Scholar] [CrossRef]
- Schultz, S. Approaches to identifying key sectors empirically by means of input-output analysis. J. Dev. Stud. 1977, 14, 77–96. [Google Scholar] [CrossRef]
- Yang, Z.S.; Cai, J.M.; Dunford, M.; Webster, D. Rethinking of the relationship between agriculture and the "urban" economy in Beijing: An input-output approach. Technol. Econ. Dev. Econ. 2014, 20, 624–647. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Guan, D.B.; Steenge, A.E.; Dietzenbacher, E.; Meng, J.; Tinoco, D.M. Assessing the economic impacts of IT service shutdown during the York flood of 2015 in the UK. Proc. R. Soc. A-Math. Phys. Eng. Sci. 2019, 475, 20180871. [Google Scholar] [CrossRef]
- Ren, H.H.; Folmer, H.; Van der Vlist, A.J. What role does the real estate-construction sector play in China’s regional economy? Ann. Reg. Sci. 2014, 52, 839–857. [Google Scholar] [CrossRef]
- Song, Y.; Liu, C.L.; Langston, C. Linkage measures of the construction sector using the hypothetical extraction method. Constr. Manag. Econ. 2006, 24, 579–589. [Google Scholar] [CrossRef]
- Dietzenbacher, E.; van Burken, B.; Kondo, Y. Hypothetical extractions from a global perspective. Econ. Syst. Res. 2019, 31, 505–519. [Google Scholar] [CrossRef] [Green Version]
- Temurshoev, U. Identifying optimal sector groupings with the hypothetical extraction method. J. Reg. Sci. 2010, 50, 872–890. [Google Scholar] [CrossRef]
- Tokito, S.; Kagawa, S.; Hanaka, T. Hypothetical extraction, betweenness centrality, and supply chain complexity. Econ. Syst. Res. 2020, 32, 1–18. [Google Scholar] [CrossRef]
- Guerra, A.I. A proposal to combine classical and hypothetical extraction input-output methods to identify key sectors for the production and distribution of electricity. Energy Effic. 2014, 7, 1053–1066. [Google Scholar] [CrossRef]
- He, K.H.; Mi, Z.F.; Chen, L.; Coffman, D.; Liang, S. Critical transmission sectors in embodied atmospheric mercury emission network in China. J. Ind. Ecol. 2021, 25, 1644–1656. [Google Scholar] [CrossRef]
- Sajid, M.J.; Li, X.C.; Cao, Q.R. Demand and supply-side carbon linkages of Turkish economy using hypothetical extraction method. J. Clean. Prod. 2019, 228, 264–275. [Google Scholar] [CrossRef]
- Ali, Y. Measuring CO2 emission linkages with the hypothetical extraction method (HEM). Ecol. Ind. 2015, 54, 171–183. [Google Scholar] [CrossRef]
- Zhang, J.J.; Yu, B.Y.; Cai, J.W.; Wei, Y.M. Impacts of household income change on CO2 emissions: An empirical analysis of China. J. Clean. Prod. 2017, 157, 190–200. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.Q.; Mao, G.Z.; Cai, H.; Zuo, J.; Wang, L.L.; Zhao, P. Industrial CO2 emissions in China based on the hypothetical extraction method: Linkage analysis. Energy Policy 2013, 62, 1238–1244. [Google Scholar] [CrossRef]
- Guerra, A.I.; Sancho, F. Measuring energy linkages with the hypothetical extraction method: An application to Spain. Energy Econ. 2010, 32, 831–837. [Google Scholar] [CrossRef]
- Deng, G.Y.; Wang, L.; Xu, X.Y. Linkage effect of virtual water trade in China’s industrial products-based on generalized hypothetical extraction method. Ecol. Ind. 2018, 93, 1302–1310. [Google Scholar] [CrossRef]
- Duarte, R.; Sanchez-Choliz, J.; Bielsa, J. Water use in the Spanish economy: An input-output approach. Ecol. Econ. 2002, 43, 71–85. [Google Scholar] [CrossRef]
- Huang, H.P.; Li, X.S.; Cao, L.H.; Jia, D.D.; Zhang, J.L.; Wang, C.Y.; Han, Y.P. Inter-sectoral linkage and external trade analysis for virtual water and embodied carbon emissions in China. Water 2018, 10, 1664. [Google Scholar] [CrossRef] [Green Version]
- Du, H.B.; Chen, Z.N.; Peng, B.B.; Southworth, F.; Ma, S.F.; Wang, Y. What drives CO2 emissions from the transport sector? A linkage analysis. Energy 2019, 175, 195–204. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Lei, Y.L.; Fan, F.Y.; Li, L.; Liu, L.N.; Wang, H.T. Inter-provincial sectoral embodied CO2 net-transfer analysis in China based on hypothetical extraction method and complex network analysis. Sci. Total Environ. 2021, 786, 147211. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.J. Inter-sectoral carbon ties and final demand in a high climate risk country: The case of Pakistan. J. Clean. Prod. 2020, 269, 122254. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Zhang, Z.H.; Wang, S.; Zhang, Y.F.; Liu, Y. Linkage analysis of sectoral CO2 emissions based on the hypothetical extraction method in South Africa. J. Clean. Prod. 2015, 103, 916–924. [Google Scholar] [CrossRef]
- Liao, H.; Andrade, C.; Lumbreras, J.; Tian, J. CO2 emissions in Beijing: Sectoral linkages and demand drivers. J. Clean. Prod. 2017, 166, 395–407. [Google Scholar] [CrossRef]
- Georgescu-Roegen, N. The Entropy Law and the Economic Process; Harvard University Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Georgescu-Roegen, N. Energy analysis and economic valuation. South. Econ. J. 1979, 45, 1023–1058. [Google Scholar] [CrossRef]
Linkage | 2002 | 2005 | 2007 | 2010 | 2012 | 2015 | 2017 | 2018 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Value | Rank | Value | Rank | Value | Rank | Value | Rank | Value | Rank | Value | Rank | Value | Rank | Value | Rank | |
IC | 1506 | 7 | 3129 | 4 | 3940 | 4 | 6080 | 3 | 5942 | 4 | 7455 | 3 | 8431 | 4 | 8544 | 4 |
MC | 13 | 7 | 32 | 7 | 12 | 7 | 21 | 7 | 38 | 7 | 54 | 7 | 21 | 7 | 24 | 7 |
NBLC | 27,670 | 1 | 37,940 | 1 | 53,943 | 1 | 69,366 | 1 | 75,046 | 1 | 106,030 | 1 | 100,050 | 1 | 111,877 | 1 |
NFLC | 91 | 8 | 248 | 8 | 79 | 8 | 125 | 8 | 187 | 8 | 188 | 8 | 102 | 8 | 117 | 8 |
Sector | U1 | U2 | U3 | U4 | U6 | U7 | U8 | Total |
---|---|---|---|---|---|---|---|---|
a | 1.66% | 8.11% | 66.69% | 8.26% | 2.56% | 9.41% | 3.31% | 100.00% |
b | 2.03% | 8.66% | 66.12% | 8.36% | 2.04% | 10.14% | 2.65% | 100.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Song, Y. Energy Consumption Linkages of the Chinese Construction Sector. Energies 2022, 15, 1761. https://doi.org/10.3390/en15051761
Li Z, Song Y. Energy Consumption Linkages of the Chinese Construction Sector. Energies. 2022; 15(5):1761. https://doi.org/10.3390/en15051761
Chicago/Turabian StyleLi, Zhaocheng, and Yu Song. 2022. "Energy Consumption Linkages of the Chinese Construction Sector" Energies 15, no. 5: 1761. https://doi.org/10.3390/en15051761
APA StyleLi, Z., & Song, Y. (2022). Energy Consumption Linkages of the Chinese Construction Sector. Energies, 15(5), 1761. https://doi.org/10.3390/en15051761