Power Quality Mitigation via Smart Demand-Side Management Based on a Genetic Algorithm
Abstract
:1. Introduction
1.1. Motivation and Idea
1.2. Literature Survey
1.2.1. Increasing Necessity for Power Quality Mitigation in (Industrial) Power Grids
1.2.2. Power Quality and Artificial Intelligence
1.2.3. Smart Grids and Reinforcement Learning
1.2.4. Genetic Algorithm Optimization
1.3. Contribution of the Paper
1.4. Structure of the Paper
2. Problem Definition and Methodology
2.1. Machine Pool—Virtual Twins of Industrial Loads
2.1.1. Automated Guided Vehicle
2.1.2. Accident Proof Electrical Saw
2.1.3. Industrial Robot
2.1.4. Stacker Crane
2.2. Database
- Relational DB—PostgreSQL
- NoSQL DB, document based—MongoDB
- Time-Series DB—InfluxDB
2.3. Demand-Side Management Algorithm
- (1)
- flexibility definition,
- (2)
- operation optimization,
- (3)
- feasibility check.
2.3.1. Coding Scheme and Gene Pool for the Genetic Algorithm
2.3.2. Optimization Problem—Fitness Functions and Objective Function
2.3.3. Selection Scheme
- (1)
- Non-Dominated Rank,
- (2)
- Crowding Distance.
2.3.4. Mutation, Crossover and Validity Filter
2.3.5. Penalty Function
2.4. Human Machine Interface
- Creation and adjustment of the operating plans,
- Configuration of the optimization,
- Visualization of the optimization result.
3. Results
3.1. Benchmark of Data Stores
- MongoDB: Ver. 3.6
- InfluxDB: Ver. 1.5.2
- PostgreSQL: Ver. 10.3
3.2. Smart Demand-Side-Management
3.2.1. Proof of Concept
3.2.2. Case Study—Industry 4.0 Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bollen, M.H.; Gu, I. Signal Processing of Power Quality Disturbances; John Wiley & Sons: Hoboken, NJ, USA, 2006; p. 30. ISBN 0471931306. [Google Scholar]
- Currence, E.J.; Plizga, J.E.; Nelson, H.N. Harmonic resonance at a medium-sized industrial plant. IEEE Trans. Ind. Appl. 1995, 31, 682–690. [Google Scholar] [CrossRef]
- Dugan, R.C.; McGranaghan, M.F.; Beaty, H.W. Electrical Power Systems Quality; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- IEEE Working Group on Power System Harmonics. Power system harmonics: An overview. IEEE Trans. Power Appar. Syst. 1983, 8, 2455–2460. [Google Scholar]
- Wang, X.; Blaabjerg, F. Harmonic stability in power electronic-based power systems: Concept, modeling, and analysis. IEEE Trans. Smart Grid 2018, 10, 2858–2870. [Google Scholar] [CrossRef] [Green Version]
- Messo, T.; Luhtala, R.; Aapro, A.; Roinila, T. Accurate impedance model of a grid-connected inverter for small-signal stability assessment in high-impedance grids. IEEJ J. Ind. Appl. 2019, 8, 488–496. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.; Koralewicz, P.; Gevorgian, V.; Wallen, R.; Jha, K.; Mashtare, D.; Burra, R.; Parsa, L. Large-signal impedance-based modeling and mitigation of resonance of converter-grid systems. IEEE Trans. Sustain. Energy 2019, 10, 1439–1449. [Google Scholar] [CrossRef]
- Chakravorty, D.; Meyer, J.; Schegner, P.; Yanchenko, S.; Schocke, M. Impact of modern electronic equipment on the assessment of network harmonic impedance. IEEE Trans. Smart Grid 2016, 8, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Hanzelka, Z.; Bien, A. Power Quality Application Guide: Harmonics & Interharmonics. A Guide Material by Leonardo Power Quality Initiative; Copper Development Association: New York, NY, USA, 2004. [Google Scholar]
- Das, J.C. Power System Harmonics and Passive Filter Designs; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Riccobono, A.; Liegmann, E.; Monti, A.; Dezza, F.C.; Siegers, J.; Santi, E. Online wideband identification of three-phase AC power grid impedances using an existing grid-tied power electronic inverter. In Proceedings of the 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), Trondheim, Norway, 27–30 June 2016. [Google Scholar]
- Bollen, M.H.; Zhong, J.; Zavoda, F.; Meyer, J.; McEachern, A.; Córcoles López, F. Power quality aspects of smart grids. In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’10), Granada, Spain, 23–25 March 2010. [Google Scholar]
- Meyer, J.; Klatt, M.; Schegner, P. Power quality challenges in future distribution networks. In Proceedings of the 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, Manchester, UK, 5–7 December 2011. [Google Scholar]
- Bollen, M.H. Understanding Power Quality Problems; IEEE Press: Piscataway, NJ, USA, 2000. [Google Scholar]
- Arrilaga, J.; Wattson, N.R.; Chen, S. Power System Quality Assessment; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Singh, B.; Chandra, A.; Al-Haddad, K. Power Quality: Problems and Mitigation Techniques; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Porter, G.J.; Sciver, J.A.E. Power Quality Solutions: Case Studies for Trouble Shooters; The Fairmount: Lilburn, GA, USA, 1999. [Google Scholar]
- Heydt, G.T. Electric Power Quality; Stars in a Circle: West Lafayette, IN, USA, 1994. [Google Scholar]
- IEEE. IEEE Guide for Application and Specification for Harmonic Filters. IEEE Stand. 2003, 1531, 1–60. [Google Scholar]
- Das, J.C. Passive filter-potentialities and limitations. IEEE Trans. Ind. Appl. 2004, 40, 232–241. [Google Scholar] [CrossRef]
- Ghosh, A.; Ledwich, G. Power Quality Enhancement Using Custom Power Devices; Springer Science & Business Media: Norwell, MA, USA, 2002. [Google Scholar]
- Nastran, J.; Cajhen, R.; Seliger, M.; Jereb, P. Active power filters for Nonlinear AC loads. IEEE Trans. Power Electron. 1994, 9, 92–96. [Google Scholar] [CrossRef]
- Ritwik, M. Reactive Power Compensation in Single-Phase Operation of Microgrid. IEEE Trans. Ind. Electron. 2013, 60, 1403–1416. [Google Scholar]
- Dou, J.; Ma, H.; Yang, J.; Zhang, Y.; Guo, R. An Improved Power Quality Evaluation for LED Lamp Based on G1-Entropy Method. IEEE Access 2021, 9, 111171–111180. [Google Scholar] [CrossRef]
- Iqbal, M.N.; Kütt, L.; Daniel, K.; Jarkovoi, M.; Asad, B.; Shabbir, N. Bivariate stochastic model of current harmonic analysis in the low voltage distribution grid. Proc. Est. Acad. Sci. 2021, 70, 190. [Google Scholar]
- Daniel, K.; Kütt, L.; Iqbal, M.N.; Shabbir, N.; Rehman, A.U.; Shafiq, M.; Hamam, H. Current Harmonic Aggregation Cases for Contemporary Loads. Energies 2022, 15, 437. [Google Scholar] [CrossRef]
- Eisenmann, A.; Streubel, T.; Rudion, K. General Framework for Simulating Power Quality Data Processing. In Proceedings of the 26th International Conference & Exhibition on Electricity Distribution—CIRED, Online, 20–23 September 2021. [Google Scholar]
- Saxena, D.; Verma, K.; Singh, S. Power quality event classification: An overview and key issues. MultiCraft Int. J. Eng. Sci. Technol. 2010, 2, 186–199. [Google Scholar] [CrossRef]
- Mohan, N.; Soman, K.P.; Vinayakumar, R. Deep power: Deep learning architectures for power quality disturbances classification. In Proceedings of the 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, India, 21–23 December 2017. [Google Scholar]
- Stuchly, J.; Misak, S.; Vantuch, T.; Burianek, T. A power quality forecasting model as an integrate part of active demand side management using artificial intelligence technique—Multilayer neural network with backpropagation learning algorithm. In Proceedings of the 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), Rome, Italy, 10–13 June 2015; pp. 611–616. [Google Scholar]
- Eisenmann, A.; Streubel, T.; Rudion, K. PQ classification by way of parallel computing-A sensitivity analysis for a real-time LSTM approach using waveform and RMS data. In Proceedings of the 13th IEEE PES PowerTech Conference, Milano, Italy, 23–27 June 2019. [Google Scholar]
- Eisenmann, A.; Streubel, T.; Rudion, K. PQ prediction by way of parallel computing - benchmark and sensitivity analysis for classical ML approaches. In Proceedings of the 25th International Conference & Exhibition on Electricity Distribution—CIRED, Madrid, Spain, 3–6 June 2019. [Google Scholar]
- Eisenmann, A.; Streubel, T.; Rudion, K. Power Quality Prediction by way of Parallel Computing—A New Approach Based on a Long Short-Term Memory Network. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe 2019), Bucharest, Romania, 29 September–2 October 2019. [Google Scholar]
- Eisenmann, A.; Streubel, T.; Rudion, K. An Investigation on feature extraction and feature selection for power quality classification with high resolution and RMS data. In Proceedings of the 9th International Conference on Renewable Power Generation—IET RPG, Dublin, Ireland, 1–2 March 2021. [Google Scholar]
- Eisenmann, A.; Streubel, T.; Rudion, K. Manual Configuration and Best Setup of Support Vector Machines for Power Quality Classification. In Proceedings of the 14th IEEE PES PowerTech Conference, Madrid, Spain, 27 June–2 July 2021. [Google Scholar]
- Qaisar, S.M.; Aljefri, R. Effective Power Quality Disturbances Identification Based on Event-Driven Processing and Machine Learning. Green Energy Sol. Energy Photovolt. Smart Cities 2020, 191–219. [Google Scholar] [CrossRef]
- Saucedo-Dorantes, J.J.; Elvira-Ortiz, D.A.; Jaen-Cuéllar, A.Y.; Toledano-Ayala, M. Novelty Detection Methodology Based on Self-Organizing Maps for Power Quality Monitoring. In Artificial Intelligence—Latest Advances, New Paradigms and Novel Applications; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Ernst, D.; Glavic, M.; Wehenkel, L. Power systems stability control: Reinforcement learning framework. IEEE Trans. Power Syst. 2004, 19, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Kara, E.C.; Berges, M.; Krogh, B.; Kar, S. Using smart devices for system-level management and control in the smart grid: A reinforcement learning framework. In Proceedings of the 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), Tainan, Taiwan, 5–8 November 2012; pp. 85–90. [Google Scholar]
- Bagheri, M.; Nurmanova, V.; Abedinia, O.; Salay Naderi, M. Enhancing power quality in microgrids with a new online control strategy for dstatcom using reinforcement learning algorithm. IEEE Access 2018, 6, 38986–38996. [Google Scholar] [CrossRef]
- Ruelens, F.; Claessens, B.J.; Vandael, S.; Iacovella, S.; Vingerhoets, P.; Belmans, R. Demand response of a heterogeneous cluster of electric water heaters using batch reinforcement learning. In Proceedings of the 2014 Power Systems Computation Conference, Wroclaw, Poland, 1–7 August 2014. [Google Scholar]
- Sheikhi, A.; Rayati, M.; Ranjbar, A.M. Demand side management for a residential customer in multi-energy systems. Sustain. Cities Soc. 2016, 22, 63–77. [Google Scholar] [CrossRef]
- François-Lavet, V.; Taralla, D.; Ernst, D.; Fonteneau, R. Deep Reinforcement Learning Solutions for Energy Microgrids Management. In European Workshop on Reinforcement Learning (EWRL 2016). 2016. Available online: https://orbi.uliege.be/bitstream/2268/203831/1/EWRL_Francois-Lavet_et_al.pdf (accessed on 2 February 2019).
- Mocanu, E.; Mocanu, D.C.; Nguyen, P.H.; Liotta, A.; Webber, M.E.; Gibescu, M.; Slootweg, J.G. On-line building energy optimization using deep reinforcement learning. IEEE Trans. Smart Grid 2019, 10, 3698–3708. [Google Scholar] [CrossRef] [Green Version]
- Vikhar, P.A. Evolutionary algorithms: A critical review and its future prospects. In Proceedings of the 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Jalgaon, India, 22–24 December 2016. [Google Scholar]
- Yao, X. Global Optimization by Evolutionary Algorithms. IEEE Trans. Evol. Comput. 1999, 3, 82–102. [Google Scholar]
- Miranda, V.; Srinivasan, D.; Proença, L.M. Evolutionary computation in power systems. Electr. Power Energy Syst. 1998, 20, 89–98. [Google Scholar] [CrossRef]
- Awais, M.; Javaid, N.; Shaheen, N.; Iqbal, Z.; Rehman, G.; Muhammad, K.; Ahmad, I. An Efficient Genetic Algorithm Based Demand Side Management Scheme for Smart Grid. In Proceedings of the 2015 18th International Conference on Network-Based Information Systems, Taipei, Taiwan, 2–4 September 2015. [Google Scholar]
- IEC. Electromagnetic compatibility (EMC)—Part 4-30: Testing and measurement techniques—Power quality measurement methods. In IEC 61000-4-30:2015; IEC: Geneva, Switzerland, 2015. [Google Scholar]
- Task Force on Harmonics Modeling and Simulation. Modeling and Simulation of the Propagation of Harmonics in Electric Power Networks. IEEE Transact. Power Delivery 1996, 11, 466–474. [Google Scholar] [CrossRef]
- Schicker, E. Datenbanken und SQL, 5th ed.; Springer Vieweg: Wiesbaden, Germany, 2017. [Google Scholar]
- Heuer, A.; Sattler, K.-U.; Saake, G. Datenbanken—Konzepte und Sprachen, 6th ed.; MITP: Frechen, Germany, 2018. [Google Scholar]
- Studer, T. Relationale Datenbanken, 1st ed.; Springer Vieweg: Wiesbaden, Germany, 2016. [Google Scholar]
- Meier, A. Werkzeuge der Digitalen Wirtschaft: Big Data, NoSQL & Co; Springer Vieweg: Wiesbaden, Germany, 2018. [Google Scholar]
- IEC. Voltage characteristics of electricity supplied by public electricity networks. In EN 50160:2015, German version EN 50160:2010 + Cor.:2010 + A1:2015; Beuth: Berlin, Germany, 2015. [Google Scholar]
- IEC. Electromagnetic compatibility (EMC)—Part 2-2: Environment—Compatibility levels for low-frequency conducted disturbances and signalling in public low-voltage power supply systems. In IEC 61000-2-2:2002 + A1:2017 + A2:2018, German version EN 61000-2-2:2002 + A1:2017 + A2:2019; IEC: Geneva, Switzerland, 2019. [Google Scholar]
- IEC. IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems. In IEEE 519-2014; IEEE SA: Piscataway Township, NJ, USA, 2014. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
Machine | AGV | Robot 1 | Robot 2 | El. Saw | St. Crane |
---|---|---|---|---|---|
Θ | 0–4 | 0–11 | 0–6 | 0–7 | 0–5 |
Machine | Operating Points | Sequence in Gene | Θ |
---|---|---|---|
AGV | 4 | 0–95 | 0–3 |
Robot 1 | 12 | 96–191 | 0–11 |
Robot 2 | 7 | 192–287 | 0–6 |
El-Saw | 8 | 288–383 | 0–7 |
St. Crane | 6 | 384–479 | 0–5 |
Generations | Pop. Size | THDV | Runtime | |
---|---|---|---|---|
100 | 1000 | 1.65 kWh | 0.9329% | 1469.50 s |
100 | 5000 | 1.76 kWh | 1.3254% | 8279.53 s |
100 | 10,000 | 1.82 kWh | 1.3536% | 13,172.46 s |
100 | 20,000 | 1.93 kWh | 1.3536% | 26,431.36 s |
500 | 1000 | 2.07 kWh | 1.3536% | 8100.78 s |
800 | 1000 | 2.16 kWh | 1.3536% | 13,555.90 s |
1000 | 1000 | 2.16 kWh | 1.3536% | 15,393.44 s |
2000 | 1000 | 2.16 kWh | 1.3536% | 32,157.59 s |
Reference | Smart DSM | ||
---|---|---|---|
‘off’ state | from 00:00–07:00 | ‘off’ state | from 00:00–07:00 |
‘on’ state | from 07:00–17:00 | ‘flex’ state | from 07:00–17:00 |
‘off’ state | from 17:00–24:00 | ‘off’ state | from 17:00–24:00 |
Normative Excitations | ||||||||
---|---|---|---|---|---|---|---|---|
Reference | Smart DSM | |||||||
95th Perc | ||||||||
H5 | H7 | H27 | H33 | H5 | H7 | H27 | H33 | |
Max | H11 | H13 | H15 | H19 | H11 | H13 | H15 | H19 |
H21 | H25 | H39 | H45 | H21 | H25 | H39 | H45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eisenmann, A.; Streubel, T.; Rudion, K. Power Quality Mitigation via Smart Demand-Side Management Based on a Genetic Algorithm. Energies 2022, 15, 1492. https://doi.org/10.3390/en15041492
Eisenmann A, Streubel T, Rudion K. Power Quality Mitigation via Smart Demand-Side Management Based on a Genetic Algorithm. Energies. 2022; 15(4):1492. https://doi.org/10.3390/en15041492
Chicago/Turabian StyleEisenmann, Adrian, Tim Streubel, and Krzysztof Rudion. 2022. "Power Quality Mitigation via Smart Demand-Side Management Based on a Genetic Algorithm" Energies 15, no. 4: 1492. https://doi.org/10.3390/en15041492
APA StyleEisenmann, A., Streubel, T., & Rudion, K. (2022). Power Quality Mitigation via Smart Demand-Side Management Based on a Genetic Algorithm. Energies, 15(4), 1492. https://doi.org/10.3390/en15041492