Failure Diagnosis and Prognosis of Induction Machines
1. Introduction
2. Short Review
Acknowledgments
Conflicts of Interest
References
- Tang, J.; Yang, Y.; Chen, J.; Qiu, R.; Liu, Z. Characteristics Analysis and Measurement of Inverter-Fed Induction Motors for Stator and Rotor Fault Detection. Energies 2019, 13, 101. [Google Scholar] [CrossRef] [Green Version]
- Strangas, E.G.; Clerc, G.; Razik, H.; Soualhi, A. Fault Diagnosis, Prognosis, and Reliability for Electrical Machines and Drives; Wiley: Hoboken, NJ, USA, 2021; 448p, ISBN 978-1-119-72275-5. [Google Scholar]
- Kacor, P.; Bernat, P.; Moldrik, P. Utilization of Two Sensors in Offline Diagnosis of Squirrel-Cage Rotors of Asynchronous Motors. Energies 2021, 14, 6573. [Google Scholar] [CrossRef]
- Teng, W.; Zhang, X.; Liu, Y.; Kusiak, A.; Ma, Z. Prognosis of the Remaining Useful Life of Bearings in a Wind Turbine Gearbox. Energies 2016, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Biot-Monterde, V.; Navarro-Navarro, Á.; Antonino-Daviu, J.A.; Razik, H. Stray Flux Analysis for the Detection and Severity Categorization of Rotor Failures in Induction Machines Driven by Soft-Starters. Energies 2021, 14, 5757. [Google Scholar] [CrossRef]
- Eid, A.; Clerc, G.; Mansouri, B.; Roux, S. A Novel Deep Clustering Method and Indicator for Time Series Soft Partitioning. Energies 2021, 14, 5530. [Google Scholar] [CrossRef]
- El Yousfi, B.; Soualhi, A.; Medjaher, K.; Guillet, F. A New Analytical Method for Modeling the Effect of Assembly Errors on a Motor-Gearbox System. Energies 2021, 14, 4993. [Google Scholar] [CrossRef]
- Białoń, T.; Niestrój, R.; Michalak, J.; Pasko, M. Induction Motor PI Observer with Reduced-Order Integrating Unit. Energies 2021, 14, 4906. [Google Scholar] [CrossRef]
- Berghout, T.; Benbouzid, M.; Mouss, L.-H. Leveraging Label Information in a Knowledge-Driven Approach for Rolling-Element Bearings Remaining Useful Life Prediction. Energies 2021, 14, 2163. [Google Scholar] [CrossRef]
- Mobarra, M.; Rezkallah, M.; Ilinca, A. Variable Speed Diesel Generators: Performance and Characteristic Comparison. Energies 2022, 15, 592. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clerc, G. Failure Diagnosis and Prognosis of Induction Machines. Energies 2022, 15, 1483. https://doi.org/10.3390/en15041483
Clerc G. Failure Diagnosis and Prognosis of Induction Machines. Energies. 2022; 15(4):1483. https://doi.org/10.3390/en15041483
Chicago/Turabian StyleClerc, Guy. 2022. "Failure Diagnosis and Prognosis of Induction Machines" Energies 15, no. 4: 1483. https://doi.org/10.3390/en15041483
APA StyleClerc, G. (2022). Failure Diagnosis and Prognosis of Induction Machines. Energies, 15(4), 1483. https://doi.org/10.3390/en15041483