Solar Radiation Components on a Horizontal Surface in a Tropical Coastal City of Salvador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site, Instrumental and Database
2.2. Diffuse Empirical Models
2.3. Statistical Indicators
3. Results and Discussion
3.1. Climatology
3.2. Evaluation of Empirical Models
3.3. Solar Radiation Components
3.4. Salvador City Solar Energy Poential
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Solar elevation angle | |
Af | Tropical Rainforest |
AST | Apparent solar time |
BS-Atlas | Brazilian Solar Atlas |
Index of agreement | |
DRMD | Diffuse radiation measuring device |
Global radiation | |
Daily global radiation | |
Hourly global radiation | |
Diffuse radiation | |
Daily diffuse radiation | |
Hourly diffuse radiation | |
Direct radiation | |
Extraterrestrial radiation | |
Hourly extraterrestrial radiation | |
GDP | Gross Domestic Product |
IBGE | Brazilian Institute of Geography and Statistics |
ITCZ | Intertropical Convergence Zone |
LabMiM | Micrometeorology and Modeling Laboratory |
INMET | National Meteorology Institute |
Diffuse fraction | |
Hourly diffuse fraction | |
Daily diffuse fraction | |
Clearness index | |
Hourly clearness index | |
Daily clearness index | |
MBE | Mean bias error/difference |
MEO | Melo–Escobedo–Oliveira shadow-ring measuring method |
Mega Joule | |
Number of observations | |
N | Entire test data amount |
NEB | Northeast of Brazil |
Observed values | |
Mean values of | |
Predicted values | |
Mean values of | |
PV | Photovoltaic systems |
Coefficient of determination | |
Sunshine | |
SASH | South Atlantic subtropical high |
Relative humidity | |
RMSE | Root mean square error |
SA | South Atlantic |
Air temperature | |
TSB | Todos os Santos Bay |
Φ | Latitude |
Persistence of level | |
W | Watt |
TW | Terawatt |
WMO | World Meteorological Organization |
References
- Breyer, C.; Heinonen, S.; Ruotsalainen, J. New consciousness: A societal and energetic vision for rebalancing humankind within the limits of planet Earth. Technol. Forecast. Soc. Chang. 2017, 114, 7–15. [Google Scholar] [CrossRef]
- Chen, S.; Chen, B. Urban energy–water nexus: A network perspective. Appl. Energy 2016, 184, 905–914. [Google Scholar] [CrossRef]
- Lang, G. Urban energy futures: A comparative analysis. Eur. J. Futures Res 2018, 6, 19. [Google Scholar] [CrossRef]
- Oliveira, J.F.G.; Trindade, T.C.G. Sustainability Performance Evaluation of Renewable Energy Sources: The Case of Brazil. In World Energy Matrix, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–17. [Google Scholar] [CrossRef]
- Sayigh, A. Solar and wind energy will supply more than 50% of world electricity by 2030. In Green Buildings and Renewable Energy, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 385–399. [Google Scholar] [CrossRef]
- Strielkowski, W.; Firsova, I.; Lukashenko, I.; Raudeliūnienė, J.; Tvaronavičienė, M. Effective management of energy consumption during the COVID-19 pandemic: The role of ICT solutions. Energies 2021, 14, 893. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F. What does the China’s economic recovery after COVID-19 pandemic mean for the economic growth and energy consumption of other countries? J. Clean. Prod. 2021, 295, 126265. [Google Scholar] [CrossRef]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- REN21. Renewables 2020—Global Status Report. Available online: https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf (accessed on 25 January 2021).
- Mulder, F.M. Implications of diurnal and seasonal variations in renewable energy generation for large scale energy storage. J. Renew. Sustain. Energy 2014, 6, 033105. [Google Scholar] [CrossRef] [Green Version]
- Jäger-Waldau, A. PV Status Report 2019; Publications Office of the European Union: Luxembourg, 2019; pp. 7–94. [Google Scholar] [CrossRef]
- IBGE. Brazilian Institute of Geography and Statistics 2020. Projections and Related of the Population of Brazil and Federation Units. Available online: https://www.ibge.gov.br/apps/populacao/projecao/index.html (accessed on 20 June 2021).
- Barros, N.; Cole, J.J.; Tranvik, L.J.; Prairie, Y.T.; Bastviken, D.; Huszar, V.L.; Roland, F. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat. Geosci. 2011, 4, 593–596. [Google Scholar] [CrossRef]
- Fthenakis, V.; Kim, H.C. Land use and electricity generation: A life-cycle analysis. Renew. Sustain. Energy Rev. 2009, 13, 1465–1474. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Davies, P.M. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Ekhtiari, N.; Grossman-Clarke, S.; Koch, H.; Meira de Souza, W.; Donner, R.V.; Volkholz, J. Effects of the lake Sobradinho reservoir (Northeastern Brazil) on the regional climate. Climate 2017, 5, 50. [Google Scholar] [CrossRef]
- de Mattos Bicudo, C.E.; Tundisi, J.G.; Scheuenstuhl, M.C.B. Strategic analysis. In Waters of Brazil, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Marengo, J.A.; Bernasconi, M. Regional differences in aridity/drought conditions over Northeast Brazil: Present state and future projections. Clim. Chang. 2015, 129, 103–115. [Google Scholar] [CrossRef]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—past, present, and future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Pereira, E.B.; Martins, F.R.; Gonçalves, A.R.; Costa, R.S.; Lima, F.J.L.; Rüther, R.; de Souza, J.G. Atlas Brasileiro de Energia Solar, 2nd ed.; Inpe: São José dos Campos, Brazil, 2017; ISBN 978-85-17-00089-8. [Google Scholar]
- Santos, R.; Andrade, T.; Branco, N.; Borja, P.; Pedrassoli, J.; Vale, T. Vegetation Cover and Surface Temperature in Urban Areas: An Analysis Using Remote Sensing in the City of Salvador, Bahia, Brazil. In Proceedings of the PLEA 2017—Passive Low Energy Architecture—Design to Thrive, Edinburg, Scotland, UK, 3–5 July 2017. [Google Scholar]
- SEI, Superintendência de Estudos Econômicos e Sociais da Bahia; Salvador; BA. Data Base. Available online: http://sim.sei.ba.gov.br/side/tv.wsp?tmp.codpai=sg14 (accessed on 1 December 2021).
- de Azevedo Dias, C.L.; Branco, D.A.C.; Arouca, M.C.; Legey, L.F.L. Performance estimation of photovoltaic technologies in Brazil. Renew. Energy 2017, 114, 367–375. [Google Scholar] [CrossRef]
- De Jong, P.; Sánchez, A.S.; Esquerre, K.; Kalid, R.D.A.; Torres, E.A. Solar and wind energy production in relation to the electricity load curve and hydroelectricity in the northeast region of Brazil. Renew. Sustain. Energy Rev. 2013, 23, 526–535. [Google Scholar] [CrossRef]
- Carvalho, M.M.Q.; La Rovere, E.L.; Gonçalves, A.C.M. Analysis of variables that influence electric energy consumption in commercial buildings in Brazil. Renew. Sustain. Energy Rev. 2010, 14, 3199–3205. [Google Scholar] [CrossRef]
- Silva, H.C.N.; Dutra, J.C.C.; Costa, J.A.P.; Ochoa, A.A.V.; Dos Santos, C.A.C.; Araújo, M.M.D. Modeling and simulation of cogeneration systems for buildings on a university campus in Northeast Brazil–A case study. Energy Convers. Manag. 2019, 186, 334–348. [Google Scholar] [CrossRef]
- Calabrò, E. An algorithm to determine the optimum tilt angle of a solar panel from global horizontal solar radiation. J. Renew. Energy 2013, 2013, 307547. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.; Escobedo, J.F. Estimates of hourly diffuse radiation on tilted surfaces in Southeast of Brazil. Int. J. Renew. Energy Res. 2013, 3, 207–221. [Google Scholar] [CrossRef]
- Despotovic, M.; Nedic, V.; Despotovic, D.; Cvetanovic, S. Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renew. Sustain. Energy Rev. 2016, 56, 246–260. [Google Scholar] [CrossRef]
- Lemos, L.F.; Starke, A.R.; Boland, J.; Cardemil, J.M.; Machado, R.D.; Colle, S. Assessment of solar radiation components in Brazil using the BRL model. Renew. Energy 2017, 108, 569–580. [Google Scholar] [CrossRef]
- Pereira, E.B.; Abreu, S.L.; Stuhlmann, R.; Rieland, M.; Colle, S. Survey of the incident solar radiation in Brazil by use of Meteosat satellite data. Sol. Energy 1996, 57, 125–132. [Google Scholar] [CrossRef]
- Fan, J.; Wu, L.; Zhang, F.; Cai, H.; Ma, X.; Bai, H. Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China. Renew. Sustain. Energy Rev. 2019, 105, 168–186. [Google Scholar] [CrossRef]
- Li, Z.; Xing, H.; Augenbroe, G. Criterion based selection of sky diffuse radiation models. Sustain. Cities Soc. 2019, 50, 101692. [Google Scholar] [CrossRef]
- Martins, F.R.; Abreu, S.L.; Pereira, E.B. Scenarios for solar thermal energy applications in Brazil. Energy Policy 2012, 48, 640–649. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Escobedo, J.F.; Machado, A.J.; Soares, J. Correlation models of diffuse solar-radiation applied to the city of Sao Paulo, Brazil. Appl. Energy 2002, 71, 59–73. [Google Scholar] [CrossRef]
- Codato, G.; Oliveira, A.P.; Soares, J.; Escobedo, J.F.; Gomes, E.N.; Pai, A.D. Global and diffuse solar irradiances in urban and rural areas in southeast Brazil. Theor. Appl. Climatol. 2008, 93, 57–73. [Google Scholar] [CrossRef]
- Marques Filho, E.P.; Oliveira, A.P.; Vita, W.A.; Mesquita, F.L.; Codato, G.; Escobedo, J.F.; França, J.R.A. Global, diffuse and direct solar radiation at the surface in the city of Rio de Janeiro: Observational characterization and empirical modeling. Renew. Energy 2016, 91, 64–74. [Google Scholar] [CrossRef] [Green Version]
- De Souza, J.L.; Lyra, G.B.; Dos Santos, C.M.; Junior, R.A.F.; Tiba, C.; Lyra, G.B.; Lemes, M.A.M. Empirical models of daily and monthly global solar irradiation using sunshine duration for Alagoas State, Northeastern Brazil. Sustain. Energy Technol. Assess. 2016, 14, 35–45. [Google Scholar] [CrossRef]
- Angstrom, A. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Q. J. R. Meteorol. Soc. 1924, 50, 121–126. [Google Scholar] [CrossRef]
- Güçlü, Y.S.; Yeleğen, M.Ö.; Dabanlı, İ.; Şişman, E. Solar irradiation estimations and comparisons by ANFIS, Angström–Prescott and dependency models. Sol. Energy 2014, 109, 118–124. [Google Scholar] [CrossRef]
- Dal Pai, A.; Escobedo, J.F.; Dal Pai, E.; de Oliveira, A.P.; Soares, J.R.; Codato, G. MEO shadowring method for measuring diffuse solar irradiance: Corrections based on sky cover. Renew. Energy 2016, 99, 754–763. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences an Introduction; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Younes, S.; Claywell, R.; Muneer, T. Quality control of solar radiation data: Present status and proposed new approaches. Energy 2015, 30, 1533–1549. [Google Scholar] [CrossRef]
- Journée, M.; Bertrand, C. Quality control of solar radiation data within the RMIB solar measurements network. Sol. Energy 2011, 85, 72–86. [Google Scholar] [CrossRef]
- Iqbal, M. An Introduction to Solar Radiation, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Fröhlich, C.; Lean, J. The Sun’s total irradiance: Cycles, trends and related climate change uncertainties since 1976. Geophys. Res. Lett. 1998, 25, 4377–4380. [Google Scholar] [CrossRef]
- Zhen, Z.; Zengwei, Z.; Li, S.; Jun, W.; Wuchun, P.; Zhikang, L.; Yunhua, S. The effects of inclined angle modification and diffuse radiation on the sun-tracking photovoltaic system. IEEE J. Photovolt. 2017, 7, 1410–1415. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Hawash, H.; Chakrabortty, R.K.; Ryan, M. PV-Net: An innovative deep learning approach for efficient forecasting of short-term photovoltaic energy production. J. Clean. Prod. 2021, 303, 127037. [Google Scholar] [CrossRef]
- Khorasanizadeh, H.; Mohammadi, K.; Goudarzi, N. Prediction of horizontal diffuse solar radiation using clearness index based empirical models; A case study. Int. J. Hydrog. Energy 2016, 41, 21888–21898. [Google Scholar] [CrossRef]
- Liu, B.Y.; Jordan, R.C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol. Energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Golovchenko, P.; Yusup, Y.; Juneng, L.; Tangang, F.T. Daily spectral ocean surface albedo (OSA) parameterization in case of clearness index (Kt) and phytoplankton variability in Malacca Strait. Estuar. Coast. Shelf Sci. 2020, 244, 106939. [Google Scholar] [CrossRef]
- Li, F.; Lin, Y.; Guo, J.; Wang, Y.; Mao, L.; Cui, Y.; Bai, Y. Novel models to estimate hourly diffuse radiation fraction for global radiation based on weather type classification. Renew. Energy 2020, 157, 1222–1232. [Google Scholar] [CrossRef]
- Jamil, B.; Akhtar, N. Estimation of diffuse solar radiation in humid-subtropical climatic region of India: Comparison of diffuse fraction and diffusion coefficient models. Energy 2017, 131, 149–164. [Google Scholar] [CrossRef]
- Scarpa, F.; Marchitto, A.; Tagliafico, L.A. Splitting the solar radiation in direct and diffuse components; Insights and constrains on the clearness-diffuse fraction representation. Int. J. Heat Technol. 2017, 35, 325–329. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Cao, Q.; Yu, Y.; Liu, Y. Comparison of daily diffuse radiation models in regions of China without solar radiation measurement. Energy 2020, 191, 116571. [Google Scholar] [CrossRef]
- Ruiz-Arias, J.A.; Alsamamra, H.; Tovar-Pescador, J.; Pozo-Vázquez, D. Proposal of a regressive model for the hourly diffuse solar radiation under all sky conditions. Energy Convers. Manag. 2010, 51, 881–893. [Google Scholar] [CrossRef]
- Furlan, C.; De Oliveira, A.P.; Soares, J.; Codato, G.; Escobedo, J.F. The role of clouds in improving the regression model for hourly values of diffuse solar radiation. Appl. Energy 2012, 92, 240–254. [Google Scholar] [CrossRef]
- Ridley, B.; Boland, J.; Lauret, P. Modelling of diffuse solar fraction with multiple predictors. Renew. Energy 2010, 35, 478–483. [Google Scholar] [CrossRef]
- Gueymard, C.A. A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects. Renew. Sustain. Energy Rev. 2014, 39, 1024–1034. [Google Scholar] [CrossRef]
- Funabashi, T. Integration of Distributed Energy Resources in Power Systems: Implementation, Operation and Control, 1st ed.; Academic Press-Elsevier: London, UK, 2016; pp. 50–110. [Google Scholar] [CrossRef]
- Roscher, S.; Hoffmann, R.; Ambacher, O. Determination of the graphene–graphite ratio of graphene powder by Raman 2D band symmetry analysis. Anal. Methods 2019, 11, 1224–1228. [Google Scholar] [CrossRef] [Green Version]
- Salisu, S.; Mustafa, M.W.; Mustapha, M.; Mohammed, O.O. Solar Radiation Forecasting in Nigeria based on Hybrid PSOANFIS and WT-ANFIS Approach. Int. J. Electr. Comput. Eng. 2019, 9, 31–41. [Google Scholar] [CrossRef]
- Ulgen, K.; Hepbasli, A. Diffuse solar radiation estimation models for Turkey’s big cities. Energy Convers. Manag. 2009, 50, 149–156. [Google Scholar] [CrossRef]
- Bessa, R.J.; Trindade, A.; Miranda, V. Spatial-temporal solar power forecasting for smart grids. IEEE Trans. Ind. Inform. 2014, 11, 232–241. [Google Scholar] [CrossRef]
- Mecibah, M.S.; Boukelia, T.E.; Tahtah, R.; Gairaa, K. Introducing the best model for estimation the monthly mean daily global solar radiation on a horizontal surface (Case study: Algeria). Renew. Sustain. Energy Rev. 2014, 36, 194–202. [Google Scholar] [CrossRef]
- Stone, R.J. A nonparametric statistical procedure for ranking the overall performance of solar radiation models at multiple locations. Energy 1994, 19, 765–769. [Google Scholar] [CrossRef]
- Saffaripour, M.H.; Mehrabian, M.A.; Bazargan, H. Predicting solar radiation fluxes for solar energy system applications. Int. J. Environ. Sci. Technol. 2013, 10, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Rao, V.B.; Hada, K.; Herdies, D.L. On the severe drought of 1993 in north-east Brazil. Int. J. Climatol. 1995, 15, 697–704. [Google Scholar] [CrossRef]
- Chaves, R.R.; Cavalcanti, I.F.A. Atmospheric circulation features associated with rainfall variability over southern Northeast Brazil. Mon. Weather Rev. 2001, 129, 2614–2626. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Cook, K.H.; Vizy, E.K. The South Atlantic subtropical high: Climatology and interannual variability. J. Clim. 2017, 30, 3279–3296. [Google Scholar] [CrossRef]
- Li, H.; Ma, W.; Wang, X.; Lian, Y. Estimating monthly average daily diffuse solar radiation with multiple predictors: A case study. Renew. Energy 2011, 36, 1944–1948. [Google Scholar] [CrossRef]
- Paulescu, E.; Blaga, R. Regression models for hourly diffuse solar radiation. Sol. Energy 2016, 125, 111–124. [Google Scholar] [CrossRef]
- Lima, F.J.; Martins, F.R.; Pereira, E.B.; Lorenz, E.; Heinemann, D. Forecast for surface solar irradiance at the Brazilian Northeastern region using NWP model and artificial neural networks. Renew. Energy 2016, 87, 807–818. [Google Scholar] [CrossRef]
- De Souza, J.L.; Nicácio, R.M.; Moura, M.A.L. Global solar radiation measurements in Maceió, Brazil. Renew. Energy 2005, 30, 1203–1220. [Google Scholar] [CrossRef]
- André, M.; de Vecchi, R.; Lambersts, R. Feasibility of Using Personal Fans for Increasing Thermal Comfort in Mixed-Mode Shared Work Spaces in Brazil: A Field Study. In Proceedings of the Windsor 2020, London, UK, 16–19 April 2020; Available online: https://www.researchgate.net/profile/Maira-Andre/publication/341434764_Feasibility_of_using_personal_fans_for_increasing_thermal_comfort_in_mixed-_mode_shared_work_spaces_in_Brazil_a_field_study/links/5ec7254ea6fdcc90d68c91f4/Feasibility-of-using-personal-fans-for-increasing-thermal-comfort-in-mixed-mode-shared-work-spaces-in-Brazil-a-field-study.pdf (accessed on 15 June 2021).
- Medeiros, F.J.D.; Silva, C.M.; Bezerra, B.G. Calibration of Ängström-Prescott equation to estimate daily solar radiation on Rio Grande do Norte state, Brazil. Rev. Bras. Meteorol. 2017, 32, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Martins, F.R.; Pereira, E.B.; Abreu, S.L. Satellite-derived solar resource maps for Brazil under SWERA project. Sol. Energy 2007, 81, 517–528. [Google Scholar] [CrossRef]
- ESMAP. Global Photovoltaic Power Potential by Country. In Global Solar Atlas; World Bank: Washington, DC, USA, 2020; Available online: https://globalsolaratlas.info/global-pv-potential-study (accessed on 1 December 2021).
- Riahi, S.; Abedini, E.; Vakili, M. Providing an accurate global model for monthly solar radiation forecasting using artificial intelligence based on air quality index and meteorological data of different cities worldwide. Environ. Sci. Pollut. Res. 2021, 28, 49697–49724. [Google Scholar] [CrossRef]
Site | Geographic Coordinates and (MAMSL) | Measured Variables | Radiometric Sensors | Data Collection Interval | Accuracy/ Uncertainty | Observational Period |
---|---|---|---|---|---|---|
INMET | 13°0′19.85″ S 38°30′20.73″ W 48 m | Pyranometer CM6B (Kipp&Zonen) | hourly | - | 2010–2019 | |
Heliograph (Campbell–Stoke) | daily | - | 2010–2019 | |||
- | hourly | - | 2010–2019 | |||
LabMiM | 12°59′56.74″ S 38°30′29.22″ W 46 m | Net Radiometer CNR1 (Kipp&Zonen) | hourly | Max. dev. 2.5% (0–1000 W m−2) | 2017/Jan–2019/Dec | |
Pyranometer PSP (Eppley) | hourly | Max. dev. 2.0% (0–1000 W m−2) | 2018/Aug–2019/Dec | |||
CS215 Temp. & Relat. Humidity (Campbell) | hourly | ±0.4 °C ±2% | 2017/Jan–2019/Dec | |||
TB4 -Rain Gage (Campbell) | hourly | Max. dev. 2% | 2017/Jan–2019/Dec |
Statistical Parameters | Ridley | Marques Filho | Lemos |
---|---|---|---|
0.910 | 0.895 | 0.901 | |
4.05 | 8.22 | −6.13 | |
22.15 | 25.57 | 24.15 | |
10.609 | 19.371 | 14.979 | |
0.984 | 0.979 | 0.981 |
Salvador | Rio de Janeiro | São Paulo | Maceió | |
---|---|---|---|---|
23.21 | 23.89 | 18.41 | 27.63 | |
13.22 | 10.78 | 11.85 | 17.41 |
Rank | Country | Cap. Install. in 2020 (GW) | Evaluated Area (km2) | Theoretical Potential (kWh/m2) | Theoretical Potential | PV Equivalent Area % |
---|---|---|---|---|---|---|
1 | China | 253.4 | 9,348,718 | 4.127 | 14.8572 | 0.67 |
2 | United States | 95.5 | 8,039,961 | 4.498 | 16.1928 | 0.83 |
3 | Japan | 71.4 | 372,503 | 3.614 | 13.0104 | 3.01 |
4 | Germany | 53.9 | 355,807 | 2.978 | 10.7208 | 3.46 |
5 | India | 47.4 | 3,082,133 | 5.098 | 18.3528 | 0.35 |
6 | Australia | 20.4 | 7,703,648 | 5.759 | 20.7324 | 0.04 |
7 | Republic of Korea | 15.9 | 100,339 | 3.987 | 14.3532 | 9.08 |
8 | Vietnam | 16.4 | 327,939 | 4.252 | 15.3072 | 38.68 |
9 | Netherlands | 10.2 | 35,115 | 2.865 | 10.314 | 29.49 |
10 | Brazil | 7.7 | 8,515,770 | 5.276 | 18.9936 | 0.06 |
Number | City/Country | Latitude | Longitude | |
---|---|---|---|---|
1 | Johannesburg, South Africa | 28.05° E | 28.05° E | 20.73 |
2 | Los Angeles, USA | 34.05° N | 144.96° E | 18.84 |
3 | Salvador | 12.49° S | 38.50° W | 18.65 |
4 | Melbourne, Australia | 37.81° S | 14.3532 | 16.98 |
5 | Tehran, Iran | 35.69° N | 51.39° E | 16.87 |
6 | Delhi, India | 28.70° N | 77.10° E | 15.38 |
7 | Beijing, China | 39.90° N | 116.41° E | 13.69 |
8 | Tokyo, Japan | 35.68° N | 139.65° E | 12.25 |
9 | London, England | 51.51° N | 118.25° W | 9.62 |
10 | Hamburg, German | 53.55° N | 9.99° E | 8.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, L.R.T.C.; Marques Filho, E.P.; Pepe, I.M.; Mascarenhas, B.S.; de Oliveira, A.P.; de A. França, J.R. Solar Radiation Components on a Horizontal Surface in a Tropical Coastal City of Salvador. Energies 2022, 15, 1058. https://doi.org/10.3390/en15031058
Gomes LRTC, Marques Filho EP, Pepe IM, Mascarenhas BS, de Oliveira AP, de A. França JR. Solar Radiation Components on a Horizontal Surface in a Tropical Coastal City of Salvador. Energies. 2022; 15(3):1058. https://doi.org/10.3390/en15031058
Chicago/Turabian StyleGomes, Leonardo Rafael Teixeira Cotrim, Edson Pereira Marques Filho, Iuri Muniz Pepe, Bruno Severino Mascarenhas, Amauri Pereira de Oliveira, and José Ricardo de A. França. 2022. "Solar Radiation Components on a Horizontal Surface in a Tropical Coastal City of Salvador" Energies 15, no. 3: 1058. https://doi.org/10.3390/en15031058
APA StyleGomes, L. R. T. C., Marques Filho, E. P., Pepe, I. M., Mascarenhas, B. S., de Oliveira, A. P., & de A. França, J. R. (2022). Solar Radiation Components on a Horizontal Surface in a Tropical Coastal City of Salvador. Energies, 15(3), 1058. https://doi.org/10.3390/en15031058