Memory Effect: How the Initial Structure of Nanoparticles Affects the Performance of De-Alloyed PtCu Electrocatalysts?
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Synthesis of the PtCu/C Catalyst with the “Alloy” Nanoparticle Structure
2.2. The Synthesis of the PtCu/C Catalyst with the “Gradient” Nanoparticle Structure
2.3. The Preparation of the De-Alloyed Catalysts
2.4. Methods to Study the Composition and the Structure of the Catalysts
2.5. Electrochemical Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cruz-Martínez, H.; Rojas-Chávez, H.; Matadamas-Ortiz, P.T.; Ortiz-Herrera, J.C.; López-Chávez, E.; Solorza-Feria, O.; Medina, D.I. Current Progress of Pt-Based ORR Electrocatalysts for PEMFCs: An Integrated View Combining Theory and Experiment. Mater. Today Phys. 2021, 19, 100406. [Google Scholar] [CrossRef]
- Wang, Y.J.; Long, W.; Wang, L.; Yuan, R.; Ignaszak, A.; Fang, B.; Wilkinson, D.P. Unlocking the Door to Highly Active ORR Catalysts for PEMFC Applications: Polyhedron-Engineered Pt-Based Nanocrystals. Energy Environ. Sci. 2018, 11, 258–275. [Google Scholar] [CrossRef]
- Mukherjee, P.; Kakade, B.; Swami, A. Current Trends in Platinum-Based Ternary Alloys as Promising Electrocatalysts for the Oxygen Reduction Reaction: A Mini Review. Energy Fuels 2022, 36, 2306–2322. [Google Scholar] [CrossRef]
- Kostuch, A.; Rutkowska, I.A.; Dembinska, B.; Wadas, A.; Negro, E.; Vezzù, K.; Di Noto, V.; Kulesza, P.J. Enhancement of Activity and Development of Low Pt Content Electrocatalysts for Oxygen Reduction Reaction in Acid Media. Molecules 2021, 26, 5147. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Zhang, D.; Zhang, Q.; Sun, Y.; Zhang, S.; Du, F.; Jin, X. Synthesis of PtCu–Based Nanocatalysts: Fundamentals and Emerging Challenges in Energy Conversion. J. Energy Chem. 2022, 64, 583–606. [Google Scholar] [CrossRef]
- Wang, H.; Lin, R.; Cai, X.; Liu, S.; Zhong, D.; Hao, Z. Transition Metal Dissolution Control in Pt-Alloy Catalyst Layers for Low Pt-Loaded PEMFCs for Improving Mass Transfer. Int. J. Heat Mass Transf. 2021, 178, 121615. [Google Scholar] [CrossRef]
- Xiao, Z.; Wu, H.; Zhong, H.; Abdelhafiz, A.; Zeng, J. De-Alloyed PtCu/C Catalysts with Enhanced Electrocatalytic Performance for the Oxygen Reduction Reaction. Nanoscale 2021, 13, 13896–13904. [Google Scholar] [CrossRef]
- Greeley, J.; Stephens, I.E.L.; Bondarenko, A.S.; Johansson, T.P.; Hansen, H.A.; Jaramillo, T.F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J.K. Alloys of Platinum and Early Transition Metals as Oxygen Reduction Electrocatalysts. Nat. Chem. 2009, 1, 552–556. [Google Scholar] [CrossRef]
- Kong, F.; Ren, Z.; Norouzi Banis, M.; Du, L.; Zhou, X.; Chen, G.; Zhang, L.; Li, J.; Wang, S.; Li, M.; et al. Active and Stable Pt-Ni Alloy Octahedra Catalyst for Oxygen Reduction via Near-Surface Atomical Engineering. ACS Catal. 2020, 10, 4205–4214. [Google Scholar] [CrossRef]
- Zhao, X.; Sasaki, K. Advanced Pt-Based Core-Shell Electrocatalysts for Fuel Cell Cathodes. Acc. Chem. Res. 2022, 55, 1226–1236. [Google Scholar] [CrossRef]
- Alekseenko, A.A.; Guterman, V.E.; Belenov, S.V.; Menshikov, V.S.; Tabachkova, N.Y.; Safronenko, O.I.; Moguchikh, E.A. Pt/C Electrocatalysts Based on the Nanoparticles with the Gradient Structure. Int. J. Hydrog. Energy 2018, 43, 3676–3687. [Google Scholar] [CrossRef]
- Pavlets, A.S.; Alekseenko, A.A.; Tabachkova, N.Y.; Safronenko, O.I.; Nikulin, A.Y.; Alekseenko, D.V.; Guterman, V.E. A Novel Strategy for the Synthesis of Pt–Cu Uneven Nanoparticles as an Efficient Electrocatalyst toward Oxygen Reduction. Int. J. Hydrog. Energy 2021, 46, 5355–5368. [Google Scholar] [CrossRef]
- Lyu, X.; Jia, Y.; Mao, X.; Li, D.; Li, G.; Zhuang, L.; Wang, X.; Yang, D.; Wang, Q.; Du, A.; et al. Gradient-Concentration Design of Stable Core–Shell Nanostructure for Acidic Oxygen Reduction Electrocatalysis. Adv. Mater. 2020, 32, 2003493. [Google Scholar] [CrossRef]
- Sohn, Y.; Park, J.H.; Kim, P.; Joo, J.B. Dealloyed PtCu Catalyst as an Efficient Electrocatalyst in Oxygen Reduction Reaction. Curr. Appl. Phys. 2015, 15, 993–999. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, W.; Lin, A.; Cheng, D. Low Pt-Content Ternary PtNiCu Nanoparticles with Hollow Interiors and Accessible Surfaces as Enhanced Multifunctional Electrocatalysts. ACS Appl. Mater. Interfaces 2020, 12, 9600–9608. [Google Scholar] [CrossRef]
- Moriau, L.J.; Hrnjić, A.; Pavlišič, A.; Kamšek, A.R.; Petek, U.; Ruiz-Zepeda, F.; Šala, M.; Pavko, L.; Šelih, V.S.; Bele, M.; et al. Resolving the Nanoparticles’ Structure-Property Relationships at the Atomic Level: A Study of Pt-Based Electrocatalysts. iScience 2021, 24, 102102. [Google Scholar] [CrossRef]
- Zhu, F.; Wu, A.; Luo, L.; Wang, C.; Yang, F.; Wei, G.; Xia, G.; Yin, J.; Zhang, J. The Asymmetric Effects of Cu2+ Contamination in a Proton Exchange Membrane Fuel Cell (PEMFC). Fuel Cells 2020, 20, 196–202. [Google Scholar] [CrossRef]
- Xiao, Z.; Jiang, Y.; Wu, H.; Zhong, H.; Song, H.; Abdelhafiz, A.; Zeng, J. De-Alloyed Ternary Electrocatalysts with High Activity and Stability for Oxygen Reduction Reaction. J. Alloy. Compd. 2021, 877, 160221. [Google Scholar] [CrossRef]
- Ruiz-Zepeda, F.; Gatalo, M.; Pavlišič, A.; Dražić, G.; Jovanovič, P.; Bele, M.; Gaberšček, M.; Hodnik, N. Atomically Resolved Anisotropic Electrochemical Shaping of Nano-Electrocatalyst. Nano Lett. 2019, 19, 4919–4927. [Google Scholar] [CrossRef] [Green Version]
- Pavlets, A.S.; Alekseenko, A.A.; Nikolskiy, A.V.; Kozakov, A.T.; Safronenko, O.I.; Pankov, I.V.; Guterman, V.E. Effect of the PtCu/C Electrocatalysts Initial Composition on Their Activity in the de-Alloyed State in the Oxygen Reduction Reaction. Int. J. Hydrog. Energy 2022, 47, 30460–30471. [Google Scholar] [CrossRef]
- Gamler, J.T.L.; Leonardi, A.; Sang, X.; Koczkur, K.M.; Unocic, R.R.; Engel, M.; Skrabalak, S.E. Effect of Lattice Mismatch and Shell Thickness on Strain in Core@shell Nanocrystals. Nanoscale Adv. 2020, 2, 1105–1114. [Google Scholar] [CrossRef] [PubMed]
- Alekseenko, A.A.; Pavlets, A.S.; Belenov, S.V.; Safronenko, O.I.; Pankov, I.V.; Guterman, V.E. The Electrochemical Activation Mode as a Way to Exceptional ORR Performance of Nanostructured PtCu/C Materials. Appl. Surf. Sci. 2022, 595, 153533. [Google Scholar] [CrossRef]
- Chattot, R.; Martens, I.; Scohy, M.; Herranz, J.; Drnec, J.; Maillard, F.; Dubau, L. Disclosing Pt-Bimetallic Alloy Nanoparticle Surface Lattice Distortion with Electrochemical Probes. ACS Energy Lett. 2020, 5, 162–169. [Google Scholar] [CrossRef]
- Chattot, R.; Le Bacq, O.; Beermann, V.; Kühl, S.; Herranz, J.; Henning, S.; Kühn, L.; Asset, T.; Guétaz, L.; Renou, G.; et al. Surface Distortion as a Unifying Concept and Descriptor in Oxygen Reduction Reaction Electrocatalysis. Nat. Mater. 2018, 17, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Mukerjee, S.; Srinivasan, S.; Soriaga, M.P.; McBreen, J. Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction: An In Situ XANES and EXAFS Investigation. J. Electrochem. Soc. 1995, 142, 1409–1422. [Google Scholar] [CrossRef]
- Srabionyan, V.V.; Pryadchenko, V.V.; Kurzin, A.A.; Belenov, S.V.; Avakyan, L.A.; Guterman, V.E.; Bugaev, L.A. Atomic Structure of PtCu Nanoparticles in PtCu/C Catalysts from EXAFS Spectroscopy Data. Phys. Solid State 2016, 58, 752–762. [Google Scholar] [CrossRef]
- Sasaki, K.; Marinkovic, N.; Isaacs, H.S.; Adzic, R.R. Synchrotron-Based in Situ Characterization of Carbon-Supported Platinum and Platinum Monolayer Electrocatalysts. ACS Catal. 2016, 6, 69–76. [Google Scholar] [CrossRef]
- Gatalo, M.; Jovanovič, P.; Ruiz-Zepeda, F.; Pavlišič, A.; Robba, A.; Bale, M.; Dražić, G.; Gaberšček, M.; Hodnik, N. Insights into Electrochemical Dealloying of Cu out of Au-Doped Pt-Alloy Nanoparticles at the Sub-Nano-Scale. J. Electrochem. Sci. Eng. 2018, 8, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Gatalo, M.; Jovanovič, P.; Petek, U.; Šala, M.; Šelih, V.S.; Ruiz-Zepeda, F.; Bele, M.; Hodnik, N.; Gaberšček, M. Comparison of Pt–Cu/C with Benchmark Pt–Co/C: Metal Dissolution and Their Surface Interactions. ACS Appl. Energy Mater. 2019, 2, 3131–3141. [Google Scholar] [CrossRef] [Green Version]
- Jeyabharathi, C.; Hodnik, N.; Baldizzone, C.; Meier, J.C.; Heggen, M.; Phani, K.L.N.; Bele, M.; Zorko, M.; Hocevar, S.; Mayrhofer, K.J.J. Time Evolution of the Stability and Oxygen Reduction Reaction Activity of PtCu/C Nanoparticles. ChemCatChem 2013, 5, 2627–2635. [Google Scholar] [CrossRef]
- Hodnik, N.; Jeyabharathi, C.; Meier, J.C.; Kostka, A.; Phani, K.L.; Rečnik, A.; Bele, M.; Hočevar, S.; Gaberšček, M.; Mayrhofer, K.J.J. Effect of Ordering of PtCu3 Nanoparticle Structure on the Activity and Stability for the Oxygen Reduction Reaction. Phys. Chem. Chem. Phys. 2014, 16, 13610–13615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Ye, K.; Liu, Q.; Qin, J.; Jiang, Q.; Yang, B.; Yin, F.; Zhang, Y.; Ye, K.; Liu, Q.; et al. Ni2+-Directed Anisotropic Growth of PtCu Nested Skeleton Cubes Boosting Electroreduction of Oxygen. Adv. Sci. 2022, 9, 2104927. [Google Scholar] [CrossRef] [PubMed]
- Podlovchenko, B.I.; Zhumaev, U.E.; Maksimov, Y.M. Galvanic Displacement of Copper Adatoms on Platinum in PtCl42- Solutions. J. Electroanal. Chem. 2011, 651, 30–37. [Google Scholar] [CrossRef]
- Pryadchenko, V.V.; Srabionyan, V.V.; Kurzin, A.A.; Bulat, N.V.; Shemet, D.B.; Avakyan, L.A.; Belenov, S.V.; Volochaev, V.A.; Zizak, I.; Guterman, V.E.; et al. Bimetallic PtCu Core-Shell Nanoparticles in PtCu/C Electrocatalysts: Structural and Electrochemical Characterization. Appl. Catal. A Gen. 2016, 525, 226–236. [Google Scholar] [CrossRef]
- Avakyan, L.; Tolchina, D.; Barkovski, V.; Belenov, S.; Alekseenko, A.; Shaginyan, A.; Srabionyan, V.; Guterman, V.; Bugaev, L. Ultimate sensitivity of radial distribution functions to architecture of PtCu bimetallic nanoparticles. Comput. Mater. Sci. 2022, 208, 111326. [Google Scholar] [CrossRef]
- Editor, G.; Russell, A.; Otani, M.; Hamada, I.; Sugino, O.; Morikawa, Y.; Okamoto, Y.; Ikeshoji, T.; Wasileski, S.A.; Janik, M.J.; et al. Voltammetric Surface Dealloying of Pt Bimetallic Nanoparticles: An Experimental and DFT Computational Analysis. Phys. Chem. Chem. Phys. 2008, 10, 3670–3683. [Google Scholar] [CrossRef]
- Guterman, V.E.; Belenov, S.V.; Krikov, V.V.; Vysochina, L.L.; Yohannes, W.; Tabachkova, N.Y.; Balakshina, E.N. Reasons for the Differences in the Kinetics of Thermal Oxidation of the Support in Pt/C Electrocatalysts. J. Phys. Chem. C 2014, 118, 23835–23844. [Google Scholar] [CrossRef]
- Erlebacher, J. An Atomistic Description of Dealloying: Porosity Evolution, the Critical Potential, and Rate-Limiting Behavior. J. Electrochem. Soc. 2004, 151, C614. [Google Scholar] [CrossRef]
- Gatalo, M.; Moriau, L.; Petek, U.; Ruiz-Zepeda, F.; Šala, M.; Grom, M.; Galun, T.; Jovanovič, P.; Pavlišič, A.; Bele, M.; et al. CO-Assisted Ex-Situ Chemical Activation of Pt-Cu/C Oxygen Reduction Reaction Electrocatalyst. Electrochim. Acta 2019, 306, 377–386. [Google Scholar] [CrossRef]
- Caballero-Manrique, G.; Velázquez-Palenzuela, A.; Brillas, E.; Centellas, F.; Garrido, J.A.; Rodríguez, R.M.; Cabot, P.L. Electrochemical Synthesis and Characterization of Carbon-Supported Pt and Pt–Ru Nanoparticles with Cu Cores for CO and Methanol Oxidation in Polymer Electrolyte Fuel Cells. Int. J. Hydrog. Energy 2014, 39, 12859–12869. [Google Scholar] [CrossRef]
- Garcia-Cardona, J.; Sirés, I.; Alcaide, F.; Brillas, E.; Centellas, F.; Cabot, P.L. Electrochemical Performance of Carbon-Supported Pt(Cu) Electrocatalysts for Low-Temperature Fuel Cells. Int. J. Hydrog. Energy 2020, 45, 20582–20593. [Google Scholar] [CrossRef]
- Zamanzad Ghavidel, M.R.; Monteverde Videla, A.H.A.; Specchia, S.; Easton, E.B. The Relationship between the Structure and Ethanol Oxidation Activity of Pt-Cu/C Alloy Catalysts. Electrochim. Acta 2017, 230, 58–72. [Google Scholar] [CrossRef]
- Urchaga, P.; Baranton, S.; Coutanceau, C.; Jerkiewicz, G. Electro-Oxidation of CO Chem on Pt Nanosurfaces: Solution of the Peak Multiplicity Puzzle. Langmuir 2012, 28, 3658–3663. [Google Scholar] [CrossRef] [PubMed]
- Ciapina, E.G.; Santos, S.F.; Gonzalez, E.R. Electrochemical CO Stripping on Nanosized Pt Surfaces in Acid Media: A Review on the Issue of Peak Multiplicity. J. Electroanal. Chem. 2018, 815, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.; Fabbri, E.; Levecque, P.; Schmidt, T.J.; Conrad, O. The Effect of Platinum Loading and Surface Morphology on Oxygen Reduction Activity. Electrocatalysis 2016, 7, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Garsany, Y.; Ge, J.; St-Pierre, J.; Rocheleau, R.; Swider-Lyons, K.E. Analytical Procedure for Accurate Comparison of Rotating Disk Electrode Results for the Oxygen Reduction Activity of Pt/C. J. Electrochem. Soc. 2014, 161, F628–F640. [Google Scholar] [CrossRef]
- Weber, P.; Weber, D.J.; Dosche, C.; Oezaslan, M. Highly Durable Pt-Based Core-Shell Catalysts with Metallic and Oxidized Co Species for Boosting the Oxygen Reduction Reaction. ACS Catal. 2022, 12, 6394–6408. [Google Scholar] [CrossRef]
- Hashiguchi, Y.; Nakamura, I.; Honma, T.; Matsushita, T.; Murayama, H.; Tokunaga, M.; Choe, Y.-K.; Fujitani, T. Effects of Pt Shell Thickness on Oxygen Reduction Reaction Over Well-Defined Pd@Pt Core-Shell Model Surface. ChemPhysChem 2022. early view. [Google Scholar] [CrossRef]
- Gamler, J.T.L.; Ashberry, H.M.; Skrabalak, S.E.; Koczkur, K.M. Random Alloyed versus Intermetallic Nanoparticles: A Comparison of Electrocatalytic Performance. Adv. Mater. 2018, 30, 1801563. [Google Scholar] [CrossRef]
- DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components|Department of Energy. Available online: https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components (accessed on 23 September 2022).
- Garsany, Y.; Singer, I.L.; Swider-Lyons, K.E. Impact of Film Drying Procedures on RDE Characterization of Pt/VC Electrocatalysts. J. Electroanal. Chem. 2011, 662, 396–406. [Google Scholar] [CrossRef]
- Shinozaki, K.; Zack, J.W.; Pylypenko, S.; Pivovar, B.S.; Kocha, S.S. Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique: II. Influence of Ink Formulation, Catalyst Layer Uniformity and Thickness. J. Electrochem. Soc. 2015, 162, F1384. [Google Scholar] [CrossRef]
Sample | ω(Pt+M), % Mass. | ω(Pt), % mass. | Composition (XRF) | Average Crystallite Diameter, DAv, nm (XRD) | Max (111) 2θ, Degrees |
---|---|---|---|---|---|
A | 27.1 | 19.0 | PtCu1.3 | 2.7 | 41.0 |
AAT | 21.6 | 19.7 | PtCu0.3 | 3.0 | 40.9 |
G | 25.1 | 20.4 | PtCu0.7 | 2.5 | 41.2 |
GAT | 19.4 | 17.5 | PtCu0.3 | 2.7 | 41.0 |
JM20 | 20.0 | 20.0 | - | 2.5 | 39.9 |
Sample | Composition after EA (XRF) | ESA, m2/gPt (Hads) | ESA, m2/gPt (CO) | Ik, mA |
---|---|---|---|---|
A | PtCu0.2 | 41 | 38 | 5.2 |
AAT | PtCu0.3 | 41 | 38 | 4.4 |
G | PtCu0.3 | 47 | 46 | 4.1 |
GAT | PtCu0.3 | 59 | 54 | 3.4 |
JM20 | - | 80 | 80 | 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlets, A.S.; Alekseenko, A.A.; Pankov, I.V.; Belenov, S.V.; Guterman, V.E. Memory Effect: How the Initial Structure of Nanoparticles Affects the Performance of De-Alloyed PtCu Electrocatalysts? Energies 2022, 15, 9643. https://doi.org/10.3390/en15249643
Pavlets AS, Alekseenko AA, Pankov IV, Belenov SV, Guterman VE. Memory Effect: How the Initial Structure of Nanoparticles Affects the Performance of De-Alloyed PtCu Electrocatalysts? Energies. 2022; 15(24):9643. https://doi.org/10.3390/en15249643
Chicago/Turabian StylePavlets, Angelina S., Anastasia A. Alekseenko, Ilya V. Pankov, Sergey V. Belenov, and Vladimir E. Guterman. 2022. "Memory Effect: How the Initial Structure of Nanoparticles Affects the Performance of De-Alloyed PtCu Electrocatalysts?" Energies 15, no. 24: 9643. https://doi.org/10.3390/en15249643
APA StylePavlets, A. S., Alekseenko, A. A., Pankov, I. V., Belenov, S. V., & Guterman, V. E. (2022). Memory Effect: How the Initial Structure of Nanoparticles Affects the Performance of De-Alloyed PtCu Electrocatalysts? Energies, 15(24), 9643. https://doi.org/10.3390/en15249643