Investigation of the OA-300M Electrolysis Cell Temperature Field of Metallurgical Production
Abstract
:1. Introduction
2. Description of the Technological Process and Formulation of the Problem
3. Research Methodology
4. Experimental Research
5. End Part Research
6. Comparison of Results
7. Discussion
8. Conclusions
- The mathematical model of heat transfer of a spatially distributed object was built.
- Experimental studies were carried out to measure the temperature field of the electrolysis cell OA-300M bottom.
- Conclusions were drawn about the possibility of the experimental determination of internal defects of the hearth bottom.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aluminum Market: Global Demand, Growth Analysis & Opportunity Outlook 2020–2024. Available online: https://www.yahoo.com/now/aluminum-market-global-demand-growth-050000911.html (accessed on 9 September 2022).
- Kvande, H. Production of primary aluminium. In Fundamentals of Aluminium Metallurgy; Production, Processing and Applications; Woodhead Publishing Series in Metals and Surface Engineering: Cambridge, UK, 2011; pp. 49–69. Available online: www.sciencedirect.com/science/article/pii/B9781845696542500031 (accessed on 9 September 2022).
- Ferrous and Non-Ferrous Metallurgy at Metallolome.ru. Available online: https://metallolome.ru// (accessed on 9 September 2022).
- Mintsis, M.Y. Current Distribution in Aluminum Electrolyzers. In Monograph; SibGIU: Novokuznetsk, Russia, 2002; 126p. (In Russian) [Google Scholar]
- Pershin, I.M.; Malkov, A.M.; Drovosekova, T.I. The study of periodic effects on parameters of hydrolytospheric processes. In Proceedings of the International Science and Technology Conference, Vladivostok, Russia, 1–2 March 2019; p. 8725353. [Google Scholar] [CrossRef]
- Pershin, I.M.; Malkov, A.V.; Pomelyayko, I.S. Design of a Distributed Debit Management Network of Operating Wells of Deposits of the CMW Region. Commun. Comput. Inf. Sci. 2021, 1396 CCIS, 317–328. [Google Scholar] [CrossRef]
- Plotnikova, N.V.; Skeeba, V.Y.; Martyushev, N.V.; Miller, R.A.; Rubtsova, N.S. Formation of high-carbon abrasion-resistant surface layers when high-energy heating by high-frequency currents. IOP Conf. Ser. Mater. Sci. Eng. 2016, 156, 012022. [Google Scholar] [CrossRef]
- Novoselov, A.G.; Sorokin, S.A.; Baranov, I.V.; Martyushev, N.V.; Rumiantceva, O.N.; Fedorov, A.A. Comprehensive Studies of the Processes of the Molecular Transfer of the Momentum, Thermal Energy and Mass in the Nutrient Media of Biotechnological Industries. Bioengineering 2022, 9, 18. [Google Scholar] [CrossRef]
- Skeeba, V.Y.; Ivancivsky, V.V.; Martyushev, N.V. Peculiarities of high-energy induction heating during surface hardening in hybrid processing conditions. Metals 2021, 11, 1354. [Google Scholar] [CrossRef]
- Wei, W.; Geng, S.; Wang, F. Evaluation of Ni-Fe base alloys as inert anode for low-temperature aluminium electrolysis. J. Mater. Sci. Technol. 2021, 107, 216–226. [Google Scholar] [CrossRef]
- Martirosyan, A.V.; Martirosyan, K.V.; Yanukyan, E.G. Methods of complex object’s transfer function calculation for distributed control system. J. Math. Stat. 2014, 10, 408–413. [Google Scholar] [CrossRef][Green Version]
- Kim, M.; Kang, J.; Kim, J.; Kim, J. Corrosion Protection Oxide Scale Formed on Surface of Fe-Ni m (M = Al, Cr, Cu) Inert Anode for Molten Salt Electrolysis. Materials 2022, 15, 719. [Google Scholar] [CrossRef]
- Huang, R.; Li, Z.; Cao, B. Dynamic plant-wide process monitoring based on distributed slow feature analysis with inter-unit dissimilarity. Korean J. Chem. Eng. 2022, 39, 275–283. [Google Scholar] [CrossRef]
- Liu, X.; Licht, G.; Wang, X.; Licht, S. Controlled Growth of Unusual Nanocarbon Allotropes by Molten Electrolysis of CO2. Catalysts 2022, 12, 125. [Google Scholar] [CrossRef]
- Korshunov, G.I.; Eremeeva, A.M.; Drebenstedt, C. Justification of the use of a vegetal additive to diesel fuel as a method of protecting underground personnel of coal mines from the impact of harmful emissions of diesel-hydraulic locomotives. J. Min. Inst. 2021, 247, 39–47. [Google Scholar] [CrossRef]
- Meshkov, A.A.; Korshunov, G.I.; Kondrasheva, N.K.; Eremeeva, A.M.; Seregin, A.S. Method of Reducing Air Pollution of the Coal Mines Working Areas with Diesel Locomotives Harmful Emissions. Bezop. Tr. V Promyshlennosti. 2020, 1, 68–72. (In Russian) [Google Scholar] [CrossRef]
- Eremeeva, A.M.; Kondrasheva, N.K.; Korshunov, G.I. Method to reduce harmful emissions when diesel locomotives operate in coal mines. Top. Issues Ration. Use Nat. Resour. 2020, 1, 10–16. [Google Scholar] [CrossRef]
- Bakesheva, A.T.; Fetisov, V.G.; Pshenin, V.V. A refined algorithm for leak location in gas pipelines with determination of quantitative parameters. Int. J. Eng. Res. Technol. 2019, 12, 2867–2869. [Google Scholar]
- Nikolaev, A.K.; Dokoukin, V.P.; Lykov, Y.V.; Fetisov, V.G. Research of processes of heat exchange in horizontal pipeline. IOP Conf. Ser. Mater. Sci. Eng. 2018, 327, 032041. [Google Scholar] [CrossRef]
- Fetisov, V.; Mohammadi, A.H.; Pshenin, V.; Kupavykh, K.; Artyukh, D. Improving the economic efficiency of vapor recovery units at hydrocarbon loading terminals. Oil Gas Sci. Technol. 2021, 76, 38. [Google Scholar] [CrossRef]
- Golovina, E. Environmental peculiarities of transboundary groundwater management. Int. J. Mech. Eng. Technol. 2019, 10, 511–519. [Google Scholar]
- Golovina, E.; Chvileva, T. Key aspects in the field of state management of groundwater production for commercial use. ARPN J. Eng. Appl. Sci. 2017, 12, 5023–5028. [Google Scholar]
- Saveliev, D.S.; Sidorenko, S.A. Effects of competitive martial arts on first-year students’ psychophysiological potential. Teor. I Prakt. Fiz. Kult. 2017, 5, 43–45. [Google Scholar]
- Ivanov, V.V.; Sidorenko, S.A. Transportless mining system in developing the suite of three horizontal seams carbonate rocks. Int. J. Pharm. Technol. 2016, 8, 27216–27224. [Google Scholar]
- Sidorenko, S.A.; Panchenko, I.A. Substantiation of parameters of the technology of mining thick flat beds by underground method with splitting the bed into two. Biosci. Biotechnol. Res. Asia 2015, 12, 2921–2928. [Google Scholar] [CrossRef][Green Version]
- Beloglazov, I.; Savchenkov, S.; Bazhin, V.; Kawalla, R. Synthesis of Mg–Zn–Nd master alloy in metallothermic reduction of neodymium from fluoride–chloride melt. Crystals 2020, 10, 985. [Google Scholar] [CrossRef]
- Savchenkov, S.A.; Bazhin, V.Y.; Volkova, O. Tendencies of innovation development of the russian iron and steel industry on the base of patent analytics for the largest national metallurgical companies. CIS Iron Steel Rev. 2020, 20, 76–82. [Google Scholar] [CrossRef]
- Meshkov, A.A.; Kazanin, O.I.; Sidorenko, A.A. Improving the efficiency of the technology and organization of the longwall face move during the intensive flat-lying coal seams mining at the kuzbass mines. J. Min. Inst. 2021, 249, 342–350. [Google Scholar] [CrossRef]
- Bazhin, V.Y.; Issa, B. Influence of heat treatment on the microstructure of steel coils of a heating tube furnace. J. Min. Inst. 2021, 249, 393–400. [Google Scholar] [CrossRef]
- Trushko, V.L.; Utkov, V.A.; Bazhin, V.Y. Topicality and possibilities for complete processing of red mud of aluminous production. J. Min. Inst. 2017, 227, 547–553. [Google Scholar] [CrossRef]
- Shanin, I.M. Multi-Level Control of Heavy-Power Electrolysis Cell Taking into Account the Thermal State. Ph.D. Thesis, St. Petersburg Mining University, Saint Petersburg, Russia, 2017. (In Russian). [Google Scholar]
- Pedro, A.A.; Bazhin, V.Y.; Suslov, A.P.; Firsov, A.Y.; Martynova, E.S. Power control of an open electric arc of an electrode furnace. Steel 2017, 7, 21–23. [Google Scholar]
- Boikov, A.V.; Payor, V.A.; Savelev, R.; Kolesnikov, A. Synthetic Data Generation for Steel Defect Detection and Classification Using Deep Learning. Symmetry 2021, 13, 1176. [Google Scholar] [CrossRef]
- Boikov, A.V.; Savelev, R.V.; Payor, V.A.; Potapov, A. Universal Approach for DEM Parameters Calibration of Bulk Materials. Symmetry 2021, 13, 1088. [Google Scholar] [CrossRef]
- Vasilyeva, N.V.; Boikov, A.V.; Erokhina, O.O.; Trifonov, A.Y. Automated digitization of radial charts. J. Min. Inst. 2021, 247, 82–87. [Google Scholar] [CrossRef]
- Malkov, A.V.; Pershin, I.M.; Pomelyayko, I.S. Designing a Control System for Underground Water Intakes. IOP Conf. Ser. Earth Environ. Sci. 2019, 272, 022026. [Google Scholar] [CrossRef]
- Drovosekova, T.I.; Pershin, I.M. Peculiarities of modelling hydro-lithospheric processes in the region of Kavkazskiye Mineralnye Vody (caucasus mineral springs). In Proceedings of the 19th International Conference on Soft Computing and Measurements, Saint Petersburg, Russia, 25–27 May 2016; pp. 215–217. [Google Scholar] [CrossRef]
- Evseeva, M.M.; Rud’, N.I.; Pershin, I.M. The environmental conditions of the Kavkazskie Mineralnye Vody (Caucasian Mineral Waters) health resort region, methods for their monitoring and improvement. Vopr. Kurortol. Fizioter. I Lech. Fiz. Kult. 2012, 5, 68–71. [Google Scholar]
- Golovina, E.I.; Grebneva, A.V. Management of groundwater resources in transboundary territories (on the example of the Russian Federation and the Republic of Estonia). J. Min. Inst. 2021, 252, 788–800. [Google Scholar] [CrossRef]
- Gerasimova, I.G.; Oblova, I.S.; Golovina, E.I. The demographic factor impact on the economics of the arctic region. Resources 2021, 10, 117. [Google Scholar] [CrossRef]
- Korshunov, G.I.; Eremeeva, A.M.; Seregin, A.S. Justification of reduction in air requirement in ventilation of coal roadways with running diesel engines. Min. Inf. Anal. Bull. 2022, 3, 47–59. [Google Scholar] [CrossRef]
- Kirsanova, N.; Lenkovets, O.; Hafeez, M. Issue of accumulation and redistribution of oil and gas rental income in the context of exhaustible natural resources in arctic zone of Russian Federation. J. Mar. Sci. Eng. 2020, 8, 1006. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Smirnov, Y.D.; Chupin, S.A. Development of the concept of an innovative laboratory installation for the study of dust-forming surfaces. J. Min. Inst. 2021, 251, 757–766. [Google Scholar] [CrossRef]
d = 5 | d = 4 | d = 3 |
---|---|---|
Tpadi (2,1,690) = 0.38 | Tpadi (2,1,690) = 0.28 | Tpadi (2,1,690) = 0.18 |
Tpadi (2,2,690) = 0.38 | Tpadi (2,2,690) = 0.28 | Tpadi (2,2,690) = 0.18 |
Tpadi (2,3,690) = 0.38 | Tpadi (2,3,690) = 0.28 | Tpadi (2,1,690) = 0.18 |
Tpadi (2,4,690) = 0.36 | Tpadi (2,4,690) = 0.26 | Tpadi (2,2,690) = 0.29 |
Tpadi (2,5,690) = 0.35 | Tpadi (2,1,690) = 0.28 | Tpadi (2,3,690) = 0.18 |
Tpadi (2,1,690) = 0.38 | Tpadi (2,2,690) = 0.39 | Tpadi (2,1,690) = 0.18 |
Tpadi (2,2,690) = 0.49 | Tpadi (2,3,690) = 0.38 | Tpadi (2,2,690) = 0.19 |
Tpadi (2,3,690) = 0.48 | Tpadi (2,4,690) = 0.28 | Tpadi (2,3,690) = 0.12 |
Tpadi (2,4,690) = 0.48 | Tpadi (2,1,690) = 0.28 | |
Tpadi (2,5,690) = 0.35 | Tpadi (2,2,690) = 0.29 | |
Tpadi (2,1,690) = 0.38 | Tpadi (2,3,690) = 0.32 | |
Tpadi (2,2,690) = 0.49 | Tpadi (2,4,690) = 0.28 | |
Tpadi (2,3,690) = 0.52 | Tpadi (2,1,690) = 0.28 | |
Tpadi (2,4,690) = 0.48 | Tpadi (2,2,690) = 0.29 | |
Tpadi (2,5,690) = 0.35 | Tpadi (2,3,690) = 0.29 | |
Tpadi (2,1,690) = 0.38 | Tpadi (2,4,690) = 0.28 | |
Tpadi (2,2,690) = 0.49 | ||
Tpadi (2,3,690) = 0.49 | ||
Tpadi (2,4,690) = 0.48 | ||
Tpadi (2,5,690) = 0.35 | ||
Tpadi (2,1,690) = 0.38 | ||
Tpadi (2,2,690) = 0.37 | ||
Tpadi (2,3,690) = 0.36 | ||
Tpadi (2,4,690) = 0.35 | ||
Tpadi (2,5,690) = 0.35 |
Name of Indicators | Values |
---|---|
Current load on series | 335.5 kA |
Medium voltage | 4.24 V |
Current output | 95.2% |
Specific electricity consumption | 13,292.0 kWh/t |
Daily pouring of aluminum | 2424.0 t |
Temperature | 952.2 °C |
Cryolite ratio | 2.36 |
Content (CaF2+MgF2) | 8.1% |
Frequency of anode effects | 0.12 pcs/day |
Metal/electrolyte level | 18.5/20.9 cm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukharova, T.V.; Ilyushin, Y.V.; Asadulagi, M.-A.M. Investigation of the OA-300M Electrolysis Cell Temperature Field of Metallurgical Production. Energies 2022, 15, 9001. https://doi.org/10.3390/en15239001
Kukharova TV, Ilyushin YV, Asadulagi M-AM. Investigation of the OA-300M Electrolysis Cell Temperature Field of Metallurgical Production. Energies. 2022; 15(23):9001. https://doi.org/10.3390/en15239001
Chicago/Turabian StyleKukharova, Tatyana Valeryevna, Yury Valeryevich Ilyushin, and Mir-Amal Mirrashidovich Asadulagi. 2022. "Investigation of the OA-300M Electrolysis Cell Temperature Field of Metallurgical Production" Energies 15, no. 23: 9001. https://doi.org/10.3390/en15239001