Parametric Analysis of a Solar Water Heater Integrated with PCM for Load Shifting
Abstract
:1. Introduction
2. The Configuration and the Principle of the SWH–PCM System
3. Mathematical Model
3.1. The Temperature Equation of the HTF
3.2. The Storage Efficiency of the SWH–PCM System
3.3. Boundary Conditions
4. Simulation Method and Model Validation
5. Results and Discussion
6. Conclusions
- -
- The highest thermal efficiency of the new SWH–PCM system is 76.3%.
- -
- There is an optimal latent heat for which the heat storage system is optimized in terms of heat stored and energy recovery efficiency of the SWH–PCM system. This optimal latent heat value is around 520 kj/kg.
- -
- For the new SWH–PCM system, compared with SWH integrated with PCM density of 1412 kg/m3, the effective heat collection time is prolonged up to 21.1 % for the case with PCM density of 3200 kg/m3.
- -
- Utilization of PCM with lower melting temperature is beneficial to enhance energy performance of an SWH. The optimal Tm value is around 313 K which gives maximum energy recovery efficiency of 32.1%.
- -
- The integration of PCM with SWH can shift 20,2 % of peak thermal energy load to off-peak periods.
- -
- Load shifting can be increased by increasing density and latent heat of PCM.
- -
- The water temperature can be maintained at a greater degree throughout the night for a longer period of time when using a PCM with lower melting temperature.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
CP | specific heat (kj/kg·K) |
F | the melted fraction of PCM |
the acceleration of gravity (m/s2) | |
h | the enthalpy (kj/kg) |
k | the thermal conductivity (W/m·K) |
L | the latent heat (kj/kg) |
P | pressure (Pa) |
S | the source term (kj/kg) |
T | the temperature (K) |
the velocity (m/s) | |
the liquid’s density (kg/m3) | |
the liquid’s dynamic viscosity (Pa s) |
Subscript
ref | the reference |
Abbreviations
HTF | Heat Transfer Fluid |
PCM | Phase Change Material |
SWH | Solar Water Heater |
References
- Elarem, R.; Alqahtani, T.; Mellouli, S.; Askri, F.; Edacherian, A.; Vineet, T.; Badruddin, I.A.; Abdelmajid, J. A comprehensive review of heat transfer intensification methods for latent heat storage units. Energy Storage 2021, 3, e1272021. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.M.A.; Ibrahim, N.I.; Mahbubul, I.M.; Ali, H.M.; Saidur, R.; Al-Sulaiman, F.A. Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review. Sol. Energy 2018, 166, 334–350. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Kurklu, A.; Ozmerzi, A.; Bilgin, S. Thermal Performance of a Water-Phase ChangeMaterial Solar Collector. Renew. Energy 2002, 26, 391–399. [Google Scholar] [CrossRef]
- Zalba, B.; Marín, J.M.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
- Eames, P.; Griffiths, P. Thermal behaviour of integrated solar collector/storage unit with 65 °C phase change material. Energy Convers. Manag. 2006, 47, 3611–3618. [Google Scholar] [CrossRef]
- Plantier, C. Etude Numérique et Expérimentale d’un Prototype de Chauffe-eau Solaire Équipé d’un Stockage à Chaleur Latente. Ph.D. Thesis, ESIGEC—Univérsité de Savoie, Chambéry, France, 2005. [Google Scholar]
- Haillot, D.; Goetz, V.; Py, X.; Abdelkarim, M.B. Integrated solar collector storage system based on phase change material and graphite composite. In Proceedings of the EUROSUN 2008, 1st International Congress on Heating, Cooling and Buildings, Lisbon, Portugal, 7–10 October 2008. [Google Scholar]
- Mettaweea, E.B.S.; Assassab, G.M.R. Experimental Study of a Compact PCM Solar Collector. Energy 2006, 31, 2958–2968. [Google Scholar] [CrossRef]
- Lacroix, M. Study of the Heat Transfer Behavior of Latent Heat Thermal Energy StorageUnit with a Finned Tube. Int. J. Heat Mass Transf. 1993, 36, 2083–2092. [Google Scholar] [CrossRef]
- Laouadi, A.; Lacroix, M. Thermal performance of a latent heat energy storage ventilated panel for electric load management. Int. J. Heat Mass Transf. 1999, 42, 275–286. [Google Scholar] [CrossRef]
- Farid, M.M.; Husian, R.M. An electrical storage heater using the phase-change method of heat storage. Energy Convers. Manag. 1990, 3, 219–230. [Google Scholar] [CrossRef]
- Hammadi, S.H. Study of solar water heating system with natural circulation in basrah. Al-Qadisiya J. Eng. Sci. 2009, 2. [Google Scholar]
- Groulx, D.; Ogoh, W. Solid-Liquid Phase Change Simulation Applied to a Cylindrical Latent Heat Energy Storage System. In Proceedings of the COMSOL Conference 2009, Boston, MA, USA, 8–10 October 2009. [Google Scholar]
- Dhaou, M.H.; Mellouli, S.; Alresheedi, F.; El-Ghoul, Y. Experimental assessment of a solar water tank integrated with nano-enhanced PCM and a stirrer. Alex. Eng. J. 2022, 61, 8113–8122. [Google Scholar] [CrossRef]
- Bouadila, S.; Baddadi, S.; Rehman, T.-U.; Ayed, R. Experimental investigation on the thermal appraisal of heat pipe-evacuated tube collector-based water heating system integrated with PCM. Renew. Energy 2022, 199, 382–394. [Google Scholar] [CrossRef]
- Paing, S.T.; Anderson, T.N.; Nates, R.J. Reducing heat loss from solar hot water storage tanks using passive baffles. J. Energy Storage 2022, 52, 104807. [Google Scholar] [CrossRef]
- Pathak, S.K.; Tyagi, V.V.; Chopra, K.; Sharma, R.K. Recent development in thermal performance of solar water heating (SWH) systems. Mater. Today Proc. 2022, 63, 778–785. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Khalid, M.; Vaka, M.; Walvekar, R.; Numan, A.; Rasheed, A.K.; Mubarak, N.M. Recent progress in solar water heaters and solar collectors: A comprehensive review. Therm. Sci. Eng. Prog. 2021, 25, 100981. [Google Scholar] [CrossRef]
- Algarni, S.; Mellouli, S.; Alqahtani, T.; Almutairi, K.; Khan, A.; Anqi, A. Experimental investigation of an evacuated tube solar collector incorporating nano-enhanced PCM as a thermal booster. Appl. Therm. Eng. 2020, 180, 115831. [Google Scholar] [CrossRef]
- Xue, H.S. Experimental investigation of a domestic solar water heater with solar collector coupled phase-change energy storage. Renew. Energy 2016, 86, 257–261. [Google Scholar] [CrossRef]
- Saraswat, A.; Bhattacharjee, R.; Verma, A.; Das, M.K.; Khandekar, S. Investigation of diffusional transport of heat and its enhancement in phase-change thermal energy storage systems. Appl. Therm. Eng. 2017, 111, 1611–1621. [Google Scholar] [CrossRef]
- Papadimitratos, A.; Sobhansarbandi, S.; Pozdin, V.; Zakhidov, A.; Hassanipour, F. Evacuated tube solar collectors integrated with phase change materials. Sol. Energy 2016, 129, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Eslamnezhad, H.; Rahimi, A. Enhance heat transfer for phase-change materials in triplex tube heat exchanger with selected arrangements of fins. Appl. Therm. Eng. 2017, 113, 813–821. [Google Scholar] [CrossRef]
- Seddegh, S.; Wang, X.; Henderson, A.D.; Xing, Z. Solar domestic hot water systems using latent heat energy storage medium: A review. Renew. Sustain. Energy Rev. 2015, 49, 517–533. [Google Scholar] [CrossRef]
- Fazilati, M.; Alemrajabi, A.A. Phase change material for enhancing solar water heater, an experimental approach. Energy Convers. Manag. 2013, 71, 138–145. [Google Scholar] [CrossRef]
- Kılıçkap, S.; El, C.; Yıldız, E. Investigation of the effect on the efficiency of phase change material placed in solar collector tank. Therm. Sci. Eng. Prog. 2018, 5, 25–31. [Google Scholar] [CrossRef]
- Pandey, A.; Hossain, M.; Tyagi, V.; Rahim, N.A.; Selvaraj, J.A.; Sari, A. Novel approaches and recent developments on potential applications of phase change materials in solar energy. Renew. Sustain. Energy Rev. 2018, 82, 281–323. [Google Scholar] [CrossRef]
- Al-Kayiem, H.H.; Lin, S.C. Performance evaluation of a solar water heater integrated with a PCM nanocomposite TES at various inclinations. Sol. Energy 2014, 109, 82–92. [Google Scholar] [CrossRef]
- Chaabane, M.; Mhiri, H.; Bournot, P. Thermal performance of an integrated collector storage solar water heater (ICSSWH) with phase change materials (PCM). Energy Convers. Manag. 2014, 78, 897–903. [Google Scholar] [CrossRef]
- Abokersh, M.H.; El-Morsi, M.; Sharaf, O.; Abdelrahman, W. On-demand operation of a compact solar water heater based on U-pipe evacuated tube solar collector combined with phase change material. Sol. Energy 2017, 155, 1130–1147. [Google Scholar] [CrossRef]
- Swiatek, M.; Fraisse, G.; Pailha, M. Stratification enhancement for an integrated collector storage solar water heater (ICSSWH). Energy Build. 2015, 106, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Mahfuz, M.; Anisur, M.; Kibria, M.; Saidur, R.; Metselaar, I. Performance investigation of thermal energy storage system with Phase Change Material (PCM) for solar water heating application. Int. Commun. Heat Mass Transf. 2014, 57, 132–139. [Google Scholar] [CrossRef]
- Mazman, M.; Cabeza, L.F.; Mehling, H.; Nogues, M.; Evliya, H.; Paksoy, H. Utilization of phase change materials in solar domestic hot water systems. Renew. Energy 2009, 34, 1639–1643. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Al-Sulaiman, F.A.; Ibrahim, N.I.; Zahir, H.; Al-Ahmed, A.; Saidur, R.; Yılbaş, B.S.; Sahin, A.Z. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew. Sustain. Energy Rev. 2017, 70, 1072–1089. [Google Scholar] [CrossRef]
- Ayman, B.; Stephen, D.; Ziad, S. Domestic Hot Water Storage Tank Utilizing Phase Change Materials (PCMs): Numerical Approach. Energies 2019, 12, 2170. [Google Scholar] [CrossRef] [Green Version]
- Harris Bernal, I.A.; James Rivas, A.M.; Ortega Del Rosario, M.D.L.A.; Saghir, M.Z. A Redesign Methodology to Improve the Performance of a Thermal Energy Storage with Phase Change Materials: A Numerical Approach. Energies 2022, 15, 960. [Google Scholar] [CrossRef]
a0 | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 |
---|---|---|---|---|---|---|---|---|---|
281.316 | 0.0025 | −3.881 × 10−7 | 4.601 × 10−11 | −1.907 × 10−15 | 3.050 × 10−20 | −3.307 × 10−26 | −4.699 × 10−30 | 5.27 × 10−35 | −1.814 × 10−40 |
Melting point | 50 °C |
Latent heat | 145 KJ/kg |
Viscosity | 1.9 mm |
Density | 1412 kg/m |
Specific heat | 2.4 KJ/kgK |
Thermal conductivity | 0.2 W/mK |
Parameters | Ref. [36] | Ref. [27] | Ref. [37] | Present Study |
---|---|---|---|---|
PCM melting temperature | 36.4 °C | 35 °C | 43.9 °C | 50 °C |
Maximum outlet water temperature | 52 °C | 73 °C | 51.3 °C | 77 °C |
Highest thermal efficiency (SSWH–PCM system) | 39% | 54% | 76.08% | 76.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mellouli, S.; Alqahtani, T.; Algarni, S. Parametric Analysis of a Solar Water Heater Integrated with PCM for Load Shifting. Energies 2022, 15, 8741. https://doi.org/10.3390/en15228741
Mellouli S, Alqahtani T, Algarni S. Parametric Analysis of a Solar Water Heater Integrated with PCM for Load Shifting. Energies. 2022; 15(22):8741. https://doi.org/10.3390/en15228741
Chicago/Turabian StyleMellouli, Sofiene, Talal Alqahtani, and Salem Algarni. 2022. "Parametric Analysis of a Solar Water Heater Integrated with PCM for Load Shifting" Energies 15, no. 22: 8741. https://doi.org/10.3390/en15228741
APA StyleMellouli, S., Alqahtani, T., & Algarni, S. (2022). Parametric Analysis of a Solar Water Heater Integrated with PCM for Load Shifting. Energies, 15(22), 8741. https://doi.org/10.3390/en15228741