A State-Observer-Based Protection Scheme for AC Microgrids with Recurrent Neural Network Assistance
Abstract
1. Introduction
1.1. Problem Statement and Prime Objective
1.2. Literature Review
1.3. Limitations in Existing Schemes
1.4. Significant Contributions
- Novel deployment of particle filters in microgrid protection schemes as a state observer with RNN support;
- First-time utilization of particle filters in the time and frequency domain for harmonics extraction;
- The scheme threshold value does not depend on the type of fault and microgrid system configuration;
- PF catering to the measurement noise autonomously is another feature of the proposed scheme [25];
- LI, as well as HI faults, are detected in the proposed scheme in both modes and different microgrid topologies;
- The proposed scheme provides backup protection in case of primary relay failure.
2. IEC Microgrid TEST Bed
3. Mathematical Modeling
3.1. Per-Phase Microgrid Signals Formulation
3.2. State-Space Model
3.3. Particle Filter as a State Observer
3.4. Recurrent Neural Networks
3.5. PFD and SOE Calculations
3.5.1. PFD
3.5.2. SOE
3.6. SOE Directional Analysis
3.7. Predefined Threshold
4. Proposed SO-Based Relay
4.1. Step 1
4.2. Step 2
4.3. Step 3
4.4. Step 4
5. Communication-Assisted Decision Unit
6. Results
6.1. Backup Protection Case Study
6.2. TU-Mode Case Study
6.2.1. LI-Fault at Line-2
6.2.2. HI-Fault at Line-4
6.3. IN-Mode Case Study
6.3.1. LI-Fault at Line-1
6.3.2. HI-Fault at Line-3
6.4. Single-Phase Tripping
7. Performance Comparison with Previous Schemes
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Particle filter algorithm steps |
Input: {xi k−1, wi k−1} Ns i = 1, zk Output: {xi k, wi k} Ns i = 1 wsum = 0 for i = 1, …, Ns do Step 1: propagate particle draw sample xi k ∼ q(xi k|xi k−1, zk) Step 2: update weight assign weight wi k Step 3: cumulative weight wsum = wsum + wi k End normalize weights for i = 1, …, Ns do wi k = wi k/wsum End Resample Ns particles with replacement for i = 1, …, Ns do wi k = 1/Ns End |
References
- Chandra, A.; Singh, G.K.; Pant, V. Protection Techniques for DC Microgrid—A Review. Electr. Power Syst. Res. 2020, 187, 106439. [Google Scholar] [CrossRef]
- Vegunta, S.C.; Higginson, M.J.; Kenarangui, Y.E.; Li, G.T.; Zabel, D.W.; Tasdighi, M.; Shadman, A. AC Microgrid Protection System Design Challenges—A Practical Experience. Energies 2021, 14, 2016. [Google Scholar] [CrossRef]
- Liu, D.; Dysko, A.; Hong, Q.; Tzelepis, D.; Booth, C.D. Transient Wavelet Energy-Based Protection Scheme for Inverter-Dominated Microgrid. IEEE Trans. Smart Grid 2022, 13, 2533–2546. [Google Scholar] [CrossRef]
- Dehghanpour, E.; Normandeau, M.; Joos, G.; Brissette, Y. A Protection System for Inverter Interfaced Microgrids. IEEE Trans. Power Deliv. 2022, 37, 2314–2325. [Google Scholar] [CrossRef]
- Abeid, S.; Hu, Y.; Alasali, F.; El-Naily, N. Innovative Optimal Nonstandard Tripping Protection Scheme for Radial and Meshed Microgrid Systems. Energies 2022, 15, 4980. [Google Scholar] [CrossRef]
- Patnaik, B.; Mishra, M.; Bansal, R.C.; Jena, R.K. AC Microgrid Protection—A Review: Current and Future Prospective. Appl. Energy 2020, 271, 115210. [Google Scholar] [CrossRef]
- Altaf, M.W.; Arif, M.T.; Islam, S.N.; Haque, M.E. Microgrid Protection Challenges and Mitigation Approaches-A Comprehensive Review. IEEE Access 2022, 10, 38895–38922. [Google Scholar] [CrossRef]
- Mumtaz, F.; Imran, K.; Basit, S.; Bukhari, A.; Khalid, K. A Kalman Filter-Based Protection Strategy for Microgrids. IEEE Access 2017, 10, 73243–73256. [Google Scholar] [CrossRef]
- Octávio, J.; Pereira, C.; Moreto, M. Protection Strategy for Fault Detection in Inverter-Dominated Low Voltage AC Microgrid. Electr. Power Syst. Res. 2021, 190, 106572. [Google Scholar] [CrossRef]
- Gashteroodkhani, O.A.; Majidi, M.; Fadali, M.S.; Etezadi-Amoli, M.; Maali-Amiri, E. A Protection Scheme for Microgrids Using Time-Time Matrix z-Score Vector. Int. J. Electr. Power Energy Syst. 2019, 110, 400–410. [Google Scholar] [CrossRef]
- Baloch, S.; Jamali, S.Z.; Mehmood, K.K.; Bukhari, S.B.A.; Zaman, M.S.U.; Hussain, A.; Kim, C.H. Microgrid Protection Strategy Based on the Autocorrelation of Current Envelopes Using the Squaring and Low-Pass Filtering Method. Energies 2020, 13, 2350. [Google Scholar] [CrossRef]
- Ranjbar, S.; Farsa, A.R.; Jamali, S. Voltage-Based Protection of Microgrids Using Decision Tree Algorithms. Int. Trans. Electr. Energy Syst. 2020, 30, e12274. [Google Scholar] [CrossRef]
- Switch, T.; Seo, H. New Protection Scheme Based on Coordination With. Energies 2019, 12, 4756. [Google Scholar]
- Mahfouz, M.M.A. A Protection Scheme for Multi-Distributed Smart Microgrid Based on Auto- Cosine Similarity of Feeders Current Patterns. Electr. Power Syst. Res. 2020, 186, 106405. [Google Scholar] [CrossRef]
- Basit, S.; Bukhari, A.; Saeed, M.; Zaman, U.; Haider, R.; Oh, Y.; Kim, C. Electrical Power and Energy Systems A Protection Scheme for Microgrid with Multiple Distributed Generations Using Superimposed Reactive Energy. Int. J. Electr. Power Energy Syst. 2017, 92, 156–166. [Google Scholar] [CrossRef]
- Elbana, M.S.; Abbasy, N.; Meghed, A.; Shaker, N. MPMU-Based Smart Adaptive Protection Scheme for Microgrids. J. Mod. Power Syst. Clean Energy 2019, 7, 887–898. [Google Scholar] [CrossRef]
- Cepeda, C.; Orozco-Henao, C.; Percybrooks, W.; Pulgarín-Rivera, J.D.; Montoya, O.D.; Gil-González, W.; Vélez, J.C. Intelligent Fault Detection System for Microgrids. Energies 2020, 13, 1223. [Google Scholar] [CrossRef]
- Bukhari, S.B.A.; Kim, C.-H.; Mehmood, K.K.; Haider, R.; Saeed Uz Zaman, M. Convolutional Neural Network-Based Intelligent Protection Strategy for Microgrids. IET Gener. Transm. Distrib. 2020, 14, 1177–1185. [Google Scholar] [CrossRef]
- Manohar, M.; Koley, E.; Ghosh, S.; Mohanta, D.K.; Bansal, R.C. Spatio-Temporal Information Based Protection Scheme for PV Integrated Microgrid under Solar Irradiance Intermittency Using Deep Convolutional Neural Network. Int. J. Electr. Power Energy Syst. 2020, 116, 105576. [Google Scholar] [CrossRef]
- Hatata, A.Y.; Essa, M.A.; Sedhom, B.E. Adaptive Protection Scheme for FREEDM Microgrid Based on Convolutional Neural Network and Gorilla Troops Optimization Technique. IEEE Access 2022, 10, 55583–55601. [Google Scholar] [CrossRef]
- Forouzesh, A.; Golsorkhi, M.S.; Savaghebi, M.; Baharizadeh, M. Support Vector Machine Based Fault Location Identification in Microgrids Using Interharmonic Injection. Energies 2021, 14, 2317. [Google Scholar] [CrossRef]
- Basit, S.; Bukhari, A.; Haider, R.; Saeed, M.; Zaman, U.; Oh, Y.; Cho, G.; Kim, C. Electrical Power and Energy Systems An Interval Type-2 Fuzzy Logic Based Strategy for Microgrid Protection. Electr. Power Energy Syst. 2018, 98, 209–218. [Google Scholar] [CrossRef]
- Lin, W.C.; Huang, W.T.; Yao, K.C.; Chen, H.T.; Ma, C.C. Fault Location and Restoration of Microgrids via Particle Swarm Optimization. Appl. Sci. 2021, 11, 7036. [Google Scholar] [CrossRef]
- Hu, J.; Liu, Z.; Chen, J.; Hu, W.; Zhang, Z.; Chen, Z. A Novel Deep Learning–Based Fault Diagnosis Algorithm for Preventing Protection Malfunction. Int. J. Electr. Power Energy Syst. 2023, 144, 108622. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, Z.; Chen, Y.; Yuan, Y. A Novel Particle Filter for Extended Target Tracking with Random Hypersurface Model. Appl. Math. Comput. 2022, 425, 127081. [Google Scholar] [CrossRef]
- Zhou, W.; Hou, J. A New Adaptive Robust Unscented Kalman Filter for Improving the Accuracy of Target Tracking. IEEE Access 2019, 7, 77476–77489. [Google Scholar] [CrossRef]
- Min, R.; Garnier, C.; Septier, F.; Klein, J. State Space Partitioning Based on Constrained Spectral Clustering for Block Particle Filtering. Signal Process. 2022, 201, 108727. [Google Scholar] [CrossRef]
- Yang, Q.; Li, J.; Le Blond, S.; Wang, C. Artificial Neural Network Based Fault Detection and Fault Location in the DC Microgrid. Energy Procedia 2016, 103, 129–134. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Umar, A.M.; Linus, O.U.; Arshad, H.; Kazaure, A.A.; Gana, U.; Kiru, M.U. Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition. IEEE Access 2019, 7, 158820–158846. [Google Scholar] [CrossRef]
- Ghaderi, A.; Ginn, H.L.; Mohammadpour, H.A. High Impedance Fault Detection: A Review. Electr. Power Syst. Res. 2017, 143, 376–388. [Google Scholar] [CrossRef]
- Mumtaz, F.; Asif, M.; Khan, H.H.; Abbas, S.; Imran, K.; Hadier, U. High Impedance Faults Detection and Classification in Re- Newable Energy-Based Distribution Networks Using Time-Varying Kalman Filtering Technique. Eng. Proc. 2022, 20, 34. [Google Scholar]
- Huang, Z.; Wang, Z. A Fault Diagnosis Algorithm for Microgrid Three-Phase Inverter Based on Trend Relationship of Adjacent Fold Lines. IEEE Trans. Ind. Inform. 2020, 16, 267–276. [Google Scholar] [CrossRef]
- Wen, L.; Li, X.; Gao, L.; Zhang, Y. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method. IEEE Trans. Ind. Electron. 2018, 65, 5990–5998. [Google Scholar] [CrossRef]
- Kar, S.; Member, S.; Samantaray, S.R.; Member, S.; Zadeh, M.D. Data-Mining Model Based Intelligent Differential Microgrid Protection Scheme. IEEE Syst. J. 2017, 11, 1161–1169. [Google Scholar] [CrossRef]
Parameters Details | Counts |
---|---|
Various location faults | 5 |
Operational regimes | 2 |
Types of faults | 10 |
Topologies | 2 |
Fault resistance | 4 |
Various lines faults | 5 |
Total scenarios | 4000 |
Parameters Details | Counts |
---|---|
Load variations | 5 |
Operational regimes | 2 |
Capacitor switching | 5 |
Topologies | 2 |
DER penetration level | 2 |
Total scenarios | 200 |
Parameters | Existing Microgrid Protection Schemes | Established Scheme | |||
---|---|---|---|---|---|
CNN | DT | FL | SVM | ||
Scheme Robustness during different modes. | No | Yes | No | No | Yes |
Requirement of threshold changing during different modes. | No | Yes | Yes | No | No |
Scheme computation | High | Moderate | Moderate | Low | Very low |
Noise catered | No | Yes | No | No | Yes |
Operating time (internal) | 85 ms | 18 ms | 74 ms | 23 ms | 15 ms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mumtaz, F.; Khan, H.H.; Zafar, A.; Ali, M.U.; Imran, K. A State-Observer-Based Protection Scheme for AC Microgrids with Recurrent Neural Network Assistance. Energies 2022, 15, 8512. https://doi.org/10.3390/en15228512
Mumtaz F, Khan HH, Zafar A, Ali MU, Imran K. A State-Observer-Based Protection Scheme for AC Microgrids with Recurrent Neural Network Assistance. Energies. 2022; 15(22):8512. https://doi.org/10.3390/en15228512
Chicago/Turabian StyleMumtaz, Faisal, Haseeb Hassan Khan, Amad Zafar, Muhammad Umair Ali, and Kashif Imran. 2022. "A State-Observer-Based Protection Scheme for AC Microgrids with Recurrent Neural Network Assistance" Energies 15, no. 22: 8512. https://doi.org/10.3390/en15228512
APA StyleMumtaz, F., Khan, H. H., Zafar, A., Ali, M. U., & Imran, K. (2022). A State-Observer-Based Protection Scheme for AC Microgrids with Recurrent Neural Network Assistance. Energies, 15(22), 8512. https://doi.org/10.3390/en15228512