Statistical Safety Factor in Lightning Performance Analysis of Overhead Distribution Lines †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset of OHL Lightning Flashovers
Algorithm 1 Lightning flashover analysis on OHL | ||
input OHL geometry (height, , …). | ||
Generate statistical distributions. | ||
flashovers ← empty(list) | ||
for in d do | ▹ for each lightning strike | |
if s = True then | ▹ shield wire is present | |
Compute EGM distances and . | ||
if then | ▹ stroke to shield wire | |
V ← Compute backflashover. | ||
else if then | ▹ stroke to phase conductor | |
V ← Compute shielding failure. | ||
else if then | ▹ indirect stroke | |
V ← Compute indirect strike with shield. | ||
else | ▹ shield wire is absent | |
Compute EGM distance . | ||
if then | ▹ stroke to phase conductor | |
V ← Compute direct strike. | ||
else if then | ▹ indirect stroke | |
V ← Compute indirect strike w/o shield. | ||
if V ≥ CFO then | ||
flashover = True | ||
else | ||
flashover = False | ||
flashovers.append(flashover) | ||
return flashovers |
OHL Dataset Example
2.2. Ensemble Learning in OHL Lightning Flashover Analysis
Algorithm 2 Bagging ensemble built from SVM base estimators | |
input X-features, y-labels | |
splitter ← StratifiedShuffleSplit(splits = 1, test = 20%) | |
X-data, y-data, X-test, y-test ← splitter.split(X-features, y-labels) | ▹ 1st |
X-train, y-train, X-validate, y-validate ← splitter.split(X-data, y-data) | ▹ 2nd |
estimators ← empty(list) | |
for to do | |
X, y ← Sample random subset from X-train, y-train. | ▹ bootstrap sample |
estimator ←SVM(C, , w) | ▹ base estimator |
Pipeline(transformer, estimator) | |
Distributions(transformer:[None, StandardScaler], kernel:[linear, RBF], C, , …) | |
model ←HalvingRandomSearchCV(Pipeline, Distributions, StratifiedKFold(k = 3), …) | |
model.fit(X, y) | ▹ fit on sample from train set |
estimators.append(model) | |
if weight = True then | ▹ weighted ensemble |
weights ← Estimators cross-entropy minimization. | |
else | ▹ equal weights |
weights ← None | |
ensemble ← SoftVotingClassifier(estimators, weights) | |
ensemble.fit(X-validate, y-validate) | ▹ fit on validation set |
← ensemble.predict(X-test) | ▹ predict on test set |
score ← metric(y-test, ) | |
return, score |
2.2.1. Classifier Performance
2.2.2. Curve of Limiting Parameters
2.2.3. Statistical Safety Factor
2.2.4. Safety Factor vs. Risk
2.2.5. Profitability of Protection Measures
3. Discussion
Model Limitations and Future Extensions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial neural network |
AUC | Area under the ROC curve |
AP | Average precision value |
CDF | Cumulative distribution function |
CLP | Curve of limiting parameters |
CFO | Critical flashover voltage |
DET | Detection error trade-off curve |
EGM | Electrogeometrical model |
EM | Electromagnetic |
HV | High voltage |
IEC | International electrotehnical commission |
LLN | Lightning location network |
ML | Machine learning |
MV | Medium voltage |
OHL | Overhead distribution line |
Probability density function | |
PR | Precision–recall curve |
ROC | Receiver operating characteristic |
SF | Statistical safety factor |
SVM | Support vector machine |
References
- Hileman, A.R. Insulation Coordination for Power Systems; CRC Press: Boca Raton, FL, USA, 1999; Chapter 10; pp. 373–460. [Google Scholar]
- Furgal, J. Influence of Lightning Current Model on Simulations of Overvoltages in High Voltage Overhead Transmission Systems. Energies 2020, 13, 296. [Google Scholar] [CrossRef] [Green Version]
- Cooray, V. (Ed.) Lightning Protection; IET Power and Energy Series 58; The Institution of Engineering and Technology: London, UK, 2010; Chapter 13; pp. 635–675. [Google Scholar]
- Chowdhuri, P. Electromagnetic Transients in Power Systems; Research Studies Press Ltd.: Taunton, UK, 1996; Chapter 14; pp. 302–334. [Google Scholar]
- Sestasombut, P.; Ngaopitakkul, A. Evaluation of a Direct Lightning Strike to the 24 kV Distribution Lines in Thailand. Energies 2019, 12, 3193. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.K.; Price, H.J.; Gurbaxani, S.H. Transient Response of Multiconductor Transmission Lines Excited by a Nonuniform Electromagnetic Field. IEEE Trans. Electromagn. Compat. 1980, EMC-22, 119–129. [Google Scholar] [CrossRef]
- Diendorfer, G. Induced voltage on an overhead line due to nearby lightning. IEEE Trans. Electromagn. Compat. 1990, 32, 292–299. [Google Scholar] [CrossRef]
- Rachidi, F.; Nucci, C.; Ianoz, M.; Mazzetti, C. Response of multiconductor power lines to nearby lightning return stroke electromagnetic fields. In Proceedings of the 1996 Transmission and Distribution Conference and Exposition, Los Angeles, CA, USA, 15–20 September 1996; pp. 294–301. [Google Scholar] [CrossRef]
- Pokharel, R.; Ishii, M.; Baba, Y. Numerical electromagnetic analysis of lightning-induced voltage over ground of finite conductivity. IEEE Trans. Electromagn. Compat. 2003, 45, 651–656. [Google Scholar] [CrossRef]
- Ren, H.M.; Zhou, B.H.; Rakov, V.A.; Shi, L.H.; Gao, C.; Yang, J.H. Analysis of Lightning-Induced Voltages on Overhead Lines Using a 2-D FDTD Method and Agrawal Coupling Model. IEEE Trans. Electromagn. Compat. 2008, 50, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Andreotti, A.; Assante, D.; Mottola, F.; Verolino, L. An Exact Closed-Form Solution for Lightning-Induced Overvoltages Calculations. IEEE Trans. Power Deliv. 2009, 24, 1328–1343. [Google Scholar] [CrossRef]
- Sun, J.; Yang, Q.; Xu, W.; Qin, Z.; Wang, K. Lightning-induced Overvoltage of 10 kV Distribution Line Based on Electromagnetic Return-stroke Model Using FDTD. In Proceedings of the 2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA), Colombo, Sri Lanka, 30 August–4 September 2021; Volume 1, pp. 1–6. [Google Scholar] [CrossRef]
- IEC 60071-2; Insulation Co-Ordination—Part 2: Application Guidelines. International Standard. IEC: Geneva, Switzerland, 2018.
- Betz, H.D.; Schmidt, K.; Laroche, P.; Blanchet, P.; Oettinger, W.P.; Defer, E.; Dziewit, Z.; Konarski, J. LINET—An international lightning detection network in Europe. Atmos. Res. 2009, 91, 564–573. [Google Scholar] [CrossRef]
- Martinez, J.; Gonzalez-Molina, F. Statistical evaluation of lightning overvoltages on overhead distribution lines using neural networks. In Proceedings of the 2001 IEEE Power Engineering Society Winter Meeting, Conference Proceedings (Cat. No.01CH37194), Columbus, OH, USA, 28 January–1 February 2001; Volume 3, pp. 1133–1138. [Google Scholar] [CrossRef]
- Martinez, J.; Gonzalez-Molina, F. Statistical evaluation of lightning overvoltages on overhead distribution lines using neural networks. IEEE Trans. Power Deliv. 2005, 20, 2219–2226. [Google Scholar] [CrossRef]
- Ain, N.U.; Mahmood, F.; Fayyaz, U.U.; Kasmaei, M.P.; Rizk, M.E.M. A Prediction Model For Lightning-Induced Overvoltages Over Lossy Ground Using Gaussian Process Regression. IEEE Trans. Power Deliv. 2022, 37, 2757–2765. [Google Scholar] [CrossRef]
- Napolitano, F.; Tossani, F.; Borghetti, A.; Nucci, C.A. Lightning Performance Assessment of Power Distribution Lines by Means of Stratified Sampling Monte Carlo Method. IEEE Trans. Power Deliv. 2018, 33, 2571–2577. [Google Scholar] [CrossRef]
- Sarajcev, P. Bagging Ensemble Classifier for Predicting Lightning Flashovers on Distribution Lines. In Proceedings of the 7th International Conference on Smart and Sustainable Technologies, Split, Croatia, 5–8 July 2022; pp. 1–6. [Google Scholar] [CrossRef]
- IEC TR 60071-4; Insulation Co-Ordination—Part 4: Computational Guide to Insulation Co-Ordination and Modelling of Electrical Networks. International Standard: Technical Recommendation. IEC: Geneva, Switzerland, 2004.
- Sarajcev, P. Dataset: Lightning Flashover Simulations on Medium Voltage Distribution Lines (Ver. 1.2). Zenodo. 2022. Available online: https://zenodo.org/record/6406077 (accessed on 1 November 2022).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective, 4th ed.; MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Sarajcev, P. Distlines. GitHub. 2022. Available online: https://github.com/sarajcev/distlines (accessed on 1 November 2022).
- Bishop, C.M. Pattern Recognition and Machine Learning; Information Science and Statistics; Springer: New York, NY, USA, 2006; Chapter 7; pp. 325–357. [Google Scholar]
- Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. J. Mach. Learn. Res. 2018, 18, 1–52. Available online: https://www.jmlr.org/papers/volume18/16-558/16-558.pdf (accessed on 1 November 2022).
- Hauschild, W.; Mosch, W. Statistical Techniques for High–Voltage Engineering; Peter Peregrinus Ltd.: Herts, UK, 1992. (In English) Originally published in German by VEB Verlag Technik, Berlin, 1984 [Google Scholar]
- CIGRE WG. Lightning Parameters for Engineering Applications; Brochure 549, CIGRÉ: Paris, France, 2013; Working Group C4.407. [Google Scholar]
- Liu, C.H.; Muna, Y.B.; Chen, Y.T.; Kuo, C.C.; Chang, H.Y. Risk Analysis of Lightning and Surge Protection Devices for Power Energy Structures. Energies 2018, 11, 1999. [Google Scholar] [CrossRef]
- IEC 62305-2; Protection against Lightning—Part 2: Risk Management. International Standard. IEC: Geneva, Switzerland, 2010.
- DEHN. Lightning Protection Guide, 3rd ed.; Application Guidelines; DEHN: Neumarkt, Germany, 2014. [Google Scholar]
- IEC 61400-24; Wind Energy Generation Systems—Part 24: Lightning Protection. International Standard. IEC: Geneva, Switzerland, 2019.
- ABB. Overvoltage Protection: Metal-Oxide Surge Arresters in Medium-Voltage Systems, 6th ed.; Application Guidelines; ABB: Wettingen, Switzerland, 2018. [Google Scholar]
Estimator | Transformer | Kernel | Coefficient | Regularization | Weight |
---|---|---|---|---|---|
SVM-A | StandardScaler | Linear | None | 35.8 | 0.31 |
SVM-B | None | RBF | Scale | 11.2 | 0.02 |
SVM-C | StandardScaler | RBF | Auto | 2.86 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarajcev, P.; Lovric, D.; Garma, T. Statistical Safety Factor in Lightning Performance Analysis of Overhead Distribution Lines. Energies 2022, 15, 8248. https://doi.org/10.3390/en15218248
Sarajcev P, Lovric D, Garma T. Statistical Safety Factor in Lightning Performance Analysis of Overhead Distribution Lines. Energies. 2022; 15(21):8248. https://doi.org/10.3390/en15218248
Chicago/Turabian StyleSarajcev, Petar, Dino Lovric, and Tonko Garma. 2022. "Statistical Safety Factor in Lightning Performance Analysis of Overhead Distribution Lines" Energies 15, no. 21: 8248. https://doi.org/10.3390/en15218248
APA StyleSarajcev, P., Lovric, D., & Garma, T. (2022). Statistical Safety Factor in Lightning Performance Analysis of Overhead Distribution Lines. Energies, 15(21), 8248. https://doi.org/10.3390/en15218248