Lattice Boltzmann Simulation of Optimal Biphilic Surface Configuration to Enhance Boiling Heat Transfer
Abstract
:1. Introduction
2. Model
3. Results
3.1. Boiling on the Surfaces with Homogenous Wettability
3.2. Bubble Dynamic at Boiling above a Single Lyophobic Zone
3.3. Boiling on the Surfaces with Contrast Wettability
3.4. Discussion
4. Conclusions
- -
- The calculations showed that the use of the surfaces with contrast wettability permits a substantial decrease in the onset of nucleate boiling compared to a bare lyophilic surface. The ONB of biphilic surfaces occurs approximately at the same superheats as on a homogeneous lyophobic surface.
- -
- Based on the simulations of a bubble dynamic at boiling above a single lyophobic zone and on analysis of key characteristics of bubble evolution, i.e., the bubble departure diameter Dd and the bubble departure frequency νd, the optimal width of the lyophobic spot Dphob/Dd ~ 0.16 was obtained.
- -
- It was shown that at moderate surface superheat, the heat transfer at boiling on surfaces with contrast wettability is significantly higher than the heat transfer on the surfaces with uniform wettability.
- -
- In terms of heat transfer performance, the optimal configuration of the biphilic surface at moderate surface superheats was determined: the ratio of the width of the lyophobic zone Dphob/Dd ~ 0.16 and the distance between the lyophobic zones 0.9 ≤ L/Dd ≤ 1.3 to the bubble departure diameter permits enhancement of the heat transfer by more than 4 times. The presented comprehensive studies made it possible to better understand the physics of the boiling process on surfaces with contrast wettability, and to identify the mechanisms of heat transfer enhancement/degradation. Based on the obtained simulation results, an optimal configuration of lyophobic zones on a lyophilic heating surface is proposed for a significant enhancement of boiling heat transfer. This information can already be used for future experiments to simplify the search for optimal configurations of biphilic surfaces for enhancement of boiling heat transfer. At the same time, it is necessary to further improve the numerical model, which would allow not only to control the surface wetting properties, but also to set morphological parameters, as well as to vary the properties of the liquid to simulate real coolants, heat exchange devices and thermal stabilization systems operating in various boiling conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, G.; Mudawar, I. Review of pool boiling enhancement by surface modification. Int. J. Heat Mass Transf. 2019, 128, 892–933. [Google Scholar] [CrossRef]
- Sajjad, U.; Sadeghianjahromi, A.; Muhammad, H.A.; Wang, C.C. Enhanced pool boiling of dielectric and highly wetting liquids—A review on enhancement mechanisms. Int. J. Heat Mass Transf. 2020, 119, 104950. [Google Scholar] [CrossRef]
- Mehralizadeh, A.; Shabanian, S.; Bakeri, G. Effect of modified surfaces on bubble dynamics and pool boiling heat transfer enhancement: A review. Therm. Sci. Eng. Prog. 2019, 15, 100451. [Google Scholar] [CrossRef]
- Khan, S.A.; Atieh, M.A.; Koç, M. Micro-nano scale surface coating for nucleate boiling heat transfer: A critical review. Energies 2018, 11, 3189. [Google Scholar] [CrossRef] [Green Version]
- Surtaev, A.; Serdyukov, V.; Pavlenko, A. Nanotechnologies for thermophysics: Heat transfer and crisis phenomena at boiling. Nanotech. Russ. 2016, 11, 696–715. [Google Scholar] [CrossRef]
- Rahman, M.; Olceroglu, E.; McCarthy, M. Role of wickability on the critical heat flux of structured superhydrophilic surfaces. Langmuir 2014, 30, 11225–11234. [Google Scholar] [CrossRef]
- Xie, S.; Beni, M.S.; Cal, J.; Zhao, J. Review of critical-heat-flux enhancement methods. Int. J. Heat Mass Transf. 2018, 122, 275–289. [Google Scholar] [CrossRef]
- Bourdon, B.; Rioboo, R.; Marengo, M.; Gosselin, E.; De Coninck, J. Influence of the wettability on the boiling onset. Langmuir 2012, 28, 1618–1624. [Google Scholar] [CrossRef]
- Betz, A.; Jenkins, J.; Kim, C.; Attinger, D. Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces. Int. J. Heat Mass Transf. 2013, 57, 733–741. [Google Scholar] [CrossRef] [Green Version]
- Safonov, A.I.; Kuznetsov, D.V.; Surtaev, A.S. Fabrication of Hydrophobic Coated Tubes for Boiling Heat Transfer Enhancement. Heat Transf. Eng. 2020, 42, 1390–1403. [Google Scholar] [CrossRef]
- Surtaev, A.; Koşar, A.; Serdyukov, V.; Malakhov, I. Boiling at subatmospheric pressures on hydrophobic surface: Bubble dynamics and heat transfer. Int. J. Therm. Sci. 2022, 173, 107423. [Google Scholar] [CrossRef]
- Teodori, E.; Valente, T.; Malavasi, I.; Moita, A.S.; Marengo, M.; Moreira, A.L.N. Effect of extreme wetting scenarios on pool boiling conditions. Appl. Therm. Eng. 2017, 115, 1424–1437. [Google Scholar]
- Phan, H.; Caney, N.; Marty, P.; Colasson, S.; Gavillet, J. Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism. Int. J. Heat Mass Transf. 2009, 52, 5459–5471. [Google Scholar] [CrossRef]
- Motezakker, A.; Sadaghiani, A.K.; Çelik, S.; Larsen, T.; Villanueva, L.G.; Kosar, A. Optimum ratio of hydrophobic to hydrophilic areas of biphilic surfaces in thermal fluid systems involving boiling. Int. J. Heat Mass Transf. 2019, 135, 164–174. [Google Scholar]
- Može, M.; Zupančič, M.; Golobič, I. Pattern geometry optimization on superbiphilic aluminum surfaces for enhanced pool boiling heat transfer. Int. J. Heat Mass Transf. 2020, 161, 120265. [Google Scholar]
- Cheng, H.C.; Jiang, Z.X.; Chang, P.H.; Chen, P.H. Effects of difference in wettability level of biphilic patterns on copper tubes in pool boiling heat transfer. Exp. Therm. Fluid Sc. 2021, 120, 110241. [Google Scholar]
- Serdyukov, V.; Patrin, G.; Malakhov, I.; Surtaev, A. Biphilic surface to improve and stabilize pool boiling in vacuum. Appl. Therm. Eng. 2022, 209, 118298. [Google Scholar]
- Kharangate, C.R.; Mudawar, I. Review of computational studies on boiling and condensation. Int. J. Heat Mass Transf. 2017, 108, 1164–1196. [Google Scholar] [CrossRef]
- Son, G.; Dhir, V.K.; Ramanujapu, N. Dynamics and Heat Transfer Associated With a Single Bubble during Nucleate Boiling on a Horizontal Surface. ASME J. Heat Transf. 1999, 121, 623–632. [Google Scholar]
- Mukherjee, A.; Dhir, V.K. Study of lateral merger of vapor bubbles during nucleate pool boiling. J. Heat Transf. 2004, 126, 1023–1039. [Google Scholar]
- Mukherjee, A.; Kandlikar, S.G. Numerical study of single bubbles with dynamic contact angle during nucleate pool boiling. Int. J. Heat Mass Transf. 2007, 50, 127. [Google Scholar]
- Duan, X.; Phillips, B.; McKrell, T.; Buongiorno, J. Synchronized High-Speed Video, Infrared Thermometry, and Particle Image Velocimetry Data for Validation of Interface-Tracking Simulations of Nucleate Boiling Phenomena. Exp. Heat Transf. 2013, 26, 169–197. [Google Scholar]
- Kunkelmann, C.; Stephan, P. CFD simulation of boiling flows using the volume of fluid method within OpenFOAM. Numer. Heat Transf. A Appl. 2009, 56, 631–646. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Zhang, Z.; Tu, Z.; Zuo, W.; Hu, W.; Han, D.; Jin, Y. Effect analysis on flow and boiling heat transfer performance of cooling water-jacket of bearing in the gasoline engine turbocharger. Appl. Therm. Eng. 2018, 130, 754–766. [Google Scholar]
- Sun, D.L.; Tao, W.Q. A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows. Int. J. Heat Mass Transf. 2010, 53, 645–655. [Google Scholar] [CrossRef]
- Ling, K.; Li, Z.Y.; Tao, W.Q. A direct numerical simulation for nucleate boiling by the VOSET method. Numer. Heat Transf. A Appl. 2014, 65, 949–971. [Google Scholar] [CrossRef]
- She, X.; Shedd, T.A.; Lindeman, B.; Yin, Y.; Zhang, X. Bubble formation on solid surface with a cavity based on molecular dynamics simulation. Int. J. Heat Mass Transf. 2016, 95, 278–287. [Google Scholar]
- Chen, Y.; Zou, Y.; Sun, D.; Wang, Y.; Yu, B. Molecular dynamics simulation of bubble nucleation on nanostructure surface. Int. J. Heat Mass Transf. 2018, 118, 1143–1151. [Google Scholar]
- Zhang, L.; Xu, J.; Liu, G.; Lei, J. Nucleate boiling on nanostructured surfaces using molecular dynamics simulations. Int. J. Therm. Sci. 2020, 152, 106325. [Google Scholar]
- Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond; Oxford University Press: Oxford, MI, USA, 2001; p. 304. [Google Scholar]
- Chen, S.; Doolen, G.D. Lattice Boltzmann method for fluid flows. Ann. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar]
- Shan, X.; Chen, H. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 1993, 47, 1815–1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; Zheng, C.; Shi, B. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 2002, 65, 46308. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Shan, X.; Doolen, G. Discrete Boltzmann equation model for nonideal gases. Phys. Rev. E Rapid Comm. 1998, 57, 13. [Google Scholar] [CrossRef]
- Kupershtokh, A.L. Incorporating a body force term into the lattice Boltzmann equation. Vestnik NGU Quart. J. Novosibirsk State Univ. Ser. Math. Mech. Inform. 2004, 4, 75–96. [Google Scholar]
- Chen, S.; Martínez, D. On boundary conditions in lattice Boltzmann methods. Phys. Fluid. 1996, 8, 2527–2536. [Google Scholar] [CrossRef]
- Li, Q.; Luo, K.H.; Kang, Q.J.; Chen, Q. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Phys. Rev. E 2014, 90, 053301. [Google Scholar]
- Gong, S.; Cheng, P. Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling. IJHMT 2013, 64, 122–132. [Google Scholar] [CrossRef]
- Fedoseev, A.V.; Surtaev, A.S.; Moiseev, M.I.; Ostapchenko, A.E. Lattice Boltzmann simulation of bubble evolution at boiling on surfaces with different wettability. J. Phys. Conf. Ser. 2020, 1677, 012085. [Google Scholar]
- Gong, S.; Cheng, P. Lattice Boltzmann simulations for surface wettability effects in saturated pool boiling heat transfer. Int. J. Heat Mass Transf. 2015, 85, 635–646. [Google Scholar] [CrossRef]
- Moiseev, M.I.; Fedoseev, A.; Shugaev, M.V.; Surtaev, A.S. Hybrid thermal lattice Boltzmann model for boiling heat transfer on surfaces with different wettability. Int. Phenom. Heat Transf. 2020, 8, 81. [Google Scholar] [CrossRef]
- Li, Q.; Kang, Q.J.; Francois, M.M.; He, Y.L.; Luo, K.H. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability. Int. J. Heat Mass Transf. 2015, 85, 787–796. [Google Scholar] [CrossRef] [Green Version]
- Fang, W.Z.; Chen, L.; Kang, Q.J.; Tao, W.Q. Lattice Boltzmann modeling of pool boiling with large liquid-gas density ratio. Int. J. Therm. Sci. 2017, 114, 172–183. [Google Scholar] [CrossRef]
- Zhang, C.; Cheng, P. Mesoscale simulations of boiling curves and boiling hysteresis under constant wall temperature and constant heat flux conditions. Int. J. Heat Mass Transf. 2017, 110, 319. [Google Scholar] [CrossRef]
- Gong, S.; Cheng, P. Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method. Int. J. Heat Mass Transf. 2015, 80, 206–216. [Google Scholar] [CrossRef]
- Li, Q.; Yu, Y.; Zhou, P.; Yan, H.J. Enhancement of Boiling Heat Transfer Using Hydrophilic-Hydrophobic Mixed Surfaces: A Lattice Boltzmann Study. Appl. Therm. Eng. 2018, 132, 490–499. [Google Scholar] [CrossRef]
- Peng, Y.; Laura, S. Equations of state in a lattice Boltzmann model. Phys. Fluids 2006, 18, 042101. [Google Scholar]
- Nam, Y.; Wu, J.; Warrier, G.; Ju, Y.S. Experimental and numerical study of single bubble dynamics on a hydrophobic surface. J. Heat Transf. 2009, 131, 121004. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, G.C.; Kang, J.Y.; Moriyama, K.; Park, H.S.; Kim, M.H. The role of surface energy in heterogeneous bubble growth on ideal surface. Int. J. Heat Mass Transf. 2017, 108, 1901–1909. [Google Scholar] [CrossRef]
- Jo, H.; Ahn, H.S.; Kang, S.; Kim, M.H. A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces. Int. J. Heat Mass Transf. 2011, 54, 5643. [Google Scholar] [CrossRef]
- Choi, C.H.; David, M.; Gao, Z.; Chang, A.; Allen, M.; Wang, H.; Chang, C.H. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces. Sci. Rep. 2016, 6, 23760. [Google Scholar] [CrossRef] [Green Version]
- Nimkar, N.D.; Bhavnani, S.H.; Jaeger, R.C. Effect of nucleation site spacing on the pool boiling characteristics of a structured surface. Int. J. Heat Mass Transf. 2006, 49, 2829. [Google Scholar] [CrossRef]
- Lim, D.Y.; Bang, I.C. Controlled bubble departure diameter on biphilic surfaces for enhanced pool boiling heat transfer performance. Int. J. Heat Mass Transf. 2020, 150, 119360. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedoseev, A.V.; Salnikov, M.V.; Ostapchenko, A.E.; Surtaev, A.S. Lattice Boltzmann Simulation of Optimal Biphilic Surface Configuration to Enhance Boiling Heat Transfer. Energies 2022, 15, 8204. https://doi.org/10.3390/en15218204
Fedoseev AV, Salnikov MV, Ostapchenko AE, Surtaev AS. Lattice Boltzmann Simulation of Optimal Biphilic Surface Configuration to Enhance Boiling Heat Transfer. Energies. 2022; 15(21):8204. https://doi.org/10.3390/en15218204
Chicago/Turabian StyleFedoseev, Alexander V., Mikhail V. Salnikov, Anastasiya E. Ostapchenko, and Anton S. Surtaev. 2022. "Lattice Boltzmann Simulation of Optimal Biphilic Surface Configuration to Enhance Boiling Heat Transfer" Energies 15, no. 21: 8204. https://doi.org/10.3390/en15218204
APA StyleFedoseev, A. V., Salnikov, M. V., Ostapchenko, A. E., & Surtaev, A. S. (2022). Lattice Boltzmann Simulation of Optimal Biphilic Surface Configuration to Enhance Boiling Heat Transfer. Energies, 15(21), 8204. https://doi.org/10.3390/en15218204