Modeling and Investigation of the Effect of a Wind Turbine on the Atmospheric Boundary Layer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ulyanovsk Wind Farm
2.1.1. Mathematical Model of the Atmospheric Boundary Layer in the Wind Turbine Zone
2.1.2. Mesh Scene and Experimental Conditions
3. Research Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
direction corresponding to the streamwise, spanwise and vertical directions | |
coordinates in the i-direction, m | |
resolved velocity in the i-direction, | |
pulsation component of the velocity in the i-direction, m/s | |
P | pressure, |
T | air temperature, K |
air density, kg/m | |
h | enthalpy, |
specific isobaric heat, | |
heat transfer coefficient, | |
turbulent viscosity coefficient | |
k | turbulent kinetic energy |
stress tensor defined by standard k- models | |
source term | |
, | coefficients of friction resistance |
turbulent friction stress | |
D | distance in diameters of the wind turbine blades |
Abbreviations | |
CAD | computer aided design |
CFD | computational fluid dynamics |
ABL | atmospheric boundary layer |
NWP | numerical weather prediction |
RANS | Reynolds-averaged Navier–Stokes |
LES | large eddy simulation |
DNS | direct numerical simulation |
HFM | high precision modeling |
BRM | blade resolution models |
ALM | actuator line models |
ADM | actuators disk models |
SOWFA | simulator for wind farm applications |
References
- Stepanov, V.S.; Stepanova, T.B.; Starikova, A.A. Sistemnyi analiz tselesoobraznosti sozdaniya lokal’nykh energosistem [System analysis of the expediency of creating local power supply systems]. Sovremennye tekhnologii Sistemnyi analiz Modelirovanie [Mod. Technol. Syst. Anal. Model.] 2018, 60, 117–124. (In Russian) [Google Scholar]
- Narbel, P.A.; Hansen, J.P. Estimating the cost of future global energy supply. Renew. Sustain. Energy Rev. 2014, 34, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Medici, D.; Ivanell, S.; Dahlberg, J.Å.; Alfredsson, P.H. The upstream flow of a wind turbine: Blockage effect. Wind Energy 2011, 14, 691–697. [Google Scholar] [CrossRef]
- Porté-Agel, F.; Bastankhah, M.; Shamsoddin, S. Wind-Turbine and Wind-Farm Flows: A Review. Bound.-Layer Meteorol 2020, 174, 1–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeer, L.J.; Sørensen, J.N.; Crespo, A. Wind turbine wake aerodynamics. Prog. Aerosp. Sci. 2003, 39, 467–510. [Google Scholar] [CrossRef]
- van der Laan, M.P.; Sørensen, N.N.; Réthoré, P.-E.; Mann, J.; Kelly, M.C.; Troldborg, N.; Schepers, J.G.; Machefaux, E. An improved k-ε model applied to a wind turbine wake in atmospheric turbulence. Wind Energy 2015, 18, 889–907. [Google Scholar] [CrossRef] [Green Version]
- Chin, C.; Peh, C.; Venkateshkumar, M. Modeling and Simulation of Offshore Wind Farms for Smart Cities In Modeling, Simulation and Optimization of Wind Farms and Hybrid Systems; Maalawi, K., Ed.; IntechOpen: London, UK, 2020. [Google Scholar]
- Ivanov, A.V.; Strijhak, S.V.; Zakharov, M.I. Modeling weather conditions in the port area and coastal zone of Tiksi Bay. Proc. Inst. Syst. Program. RAS (Proc. ISP RAS) 2019, 31, 163–176. (In Russian) [Google Scholar] [CrossRef]
- Porté-Agel, F.; Wu, Y.-T.; Lu, H.; Conzemius, R.J. Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. J. Wind. Eng. Ind. Aerodyn. 2011, 99, 154–168. [Google Scholar] [CrossRef]
- Hsieh, A.S.; Brown, K.A.; deVelder, N.B.; Herges, T.G.; Knaus, R.C. High-fidelity wind farm simulation methodology with experimental validation. J. Wind. Eng. Ind. Aerodyn 2021, 218, 104754. [Google Scholar] [CrossRef]
- Ichenial, M.M.; El-Hajjaji, A.; Khamlichi, A. Modeling of the atmospheric boundary layer under stability stratification for wind turbine wake production. Wind Eng. 2021, 45, 178–204. [Google Scholar] [CrossRef]
- Goit, J.P.; Meyers, J. Optimal control of energy extraction in wind-farm boundary layers. J. Fluid Mech. 2015, 768, 5–50. [Google Scholar] [CrossRef]
- Annoni, J.; Fleming, P.; Scholbrock, A.; Roadman, J.; Dana, S.; Adcock, C.; Porte-Agel, F.; Raach, S.; Haizmann, F.; Schlipf, D. Analysis of control-oriented wake modeling tools using lidar field results. Wind. Energy Sci. 2018, 3, 819–831. [Google Scholar] [CrossRef] [Green Version]
- Vahidi, D.; Porté-Agel, F. A physics-based model for wind turbine wake expansion in the atmospheric boundary layer. J. Fluid Mech. 2022, 943, A49. [Google Scholar] [CrossRef]
- Lu, B.; Li, Q.-S. Large eddy simulation of the atmospheric boundary layer to investigate the Coriolis effect on wind and turbulence characteristics over different terrains. J. Wind. Eng. Ind. Aerodyn. 2022, 220, 104845. [Google Scholar] [CrossRef]
- Miller, L.M.; David, W.K. Climatic impacts of wind power. Joule 2 2018, 12, 2618–2632. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Luo, K.; Wu, C.; Fan, J. Impact of substantial wind farms on the local and regional atmospheric boundary layer: Case study of Zhangbei wind power base in China. Energy 2019, 183, 1136–1149. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, K.; Wu, C.; Zhu, Z.; Fan, J. Mesoscale simulations of a real onshore wind power base in complex terrain: Wind farm wake behavior and power production. Energy 2022, 241, 122873. [Google Scholar] [CrossRef]
- Yuzhang, C.; Andrés, A.S.; Siyue, P.; Jiafeng, Z.; Yangruixue, C.; Liang, Y. A multi-scale model for day-ahead wind speed forecasting: A case study of the Houhoku wind farm, Japan. Sustain. Energy Technol. Assessments 2022, 52, 101995. [Google Scholar]
- Rajewski, D.A.; Takle, E.S.; Lundquist, J.K.; Prueger, J.H.; Pfeiffer, R.L.; Hatfield, J.L.; Spoth, K.K.; Doorenbos, R.K. Changes in fluxes of heat, H2O, and CO2 caused by a large wind farm. Agric. For. Meteorol. 2014, 194, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Bastankhah, M.; Porté-Agel, F. Wind farm power optimization via yaw angle control: A wind tunnel study. J. Renew. Sustain. Energy 2019, 11, 023301. [Google Scholar] [CrossRef] [Green Version]
- Kurgansky, M.V.; Krupchatnikov, V.N. Research in dynamic meteorology in Russia in 2015–2018. Proc. Russ. Acad. Sci. Phys. Atmos. Ocean 2019, 55, 6–47. [Google Scholar]
- Porté-Agel, F.; Lu, H.; Wu, Y.-T. Interaction between large wind farms and the atmospheric boundary layer. Procedia IUTAM 2014, 10, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Calaf, M.; Meneveau, C.; Meyers, J. Large Eddy Simulation Study of Fully Developed Wind-turbine Array Boundary Layers. Phys. Fluids 2010, 22, 1–16. [Google Scholar] [CrossRef]
- Martínez-Tossas, L.A.; Churchfield, M.J.; Leonardi, S. Large eddy simulations of the flow past wind turbines: Actuator line and disk modeling. Wind Energy 2015, 18, 1047–1060. [Google Scholar] [CrossRef]
- Mehta, D.; Van Zuijlen, A.H.; Koren, B.; Holierhoek, J.G.; Bijl, H. Large Eddy Simulation of wind farm aerodynamics: A review. J. Wind. Eng. Ind. Aerodyn. 2014, 133, 1–17. [Google Scholar] [CrossRef]
- Jha, P.K.; Churchfield, M.J.; Moriarty, P.J.; Schmitz, S. Guidelines for Volume Force Distributions Within Actuator Line Modeling of Wind Turbines on Large-Eddy Simulation-Type Grids. ASME J. Sol. Energy Eng. 2014, 136, 031003. [Google Scholar] [CrossRef]
- Abdelsalam, A.M.; Ramalingam, V. Numerical simulation of atmospheric boundary layer and wakes of horizontal-axis wind turbines. J. Energy South. Afr. 2017, 25, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Lundquist, J.K.; Churchfield, M.J.; Lee, S.; Clifton, A. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics. Atmos. Meas. Tech. 2015, 8, 907–920. [Google Scholar] [CrossRef] [Green Version]
- Abkar, M.; Porté-Agel, F. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study. Phys. Fluids 2015, 27, 035104. [Google Scholar] [CrossRef] [Green Version]
- Kraposhin, M.V.; Strijhak, S.V. The problem-oriented library SOWFA for solving the applied tasks of wind energy. Proc. Inst. Syst. Program. RAS (Proc. ISP RAS) 2018, 30, 259–274. (In Russian) [Google Scholar] [CrossRef]
- Kozin, A.A.; Kirpichnikova, M. Analysis of the group of vertical-axis wind turbines in the software package MATLAB. Altern. Energy Ecol. (ISIEE) 2014, 5, 45–49. [Google Scholar]
- Strijhak, S.V. Mathematical modeling of flow parameters for single wind turbine. Civ. Aviat. High Technol. 2016, 19, 176–184. (In Russian) [Google Scholar]
- Koshelev, K.B.; Strihhak, S.V. Simulation of particle dynamics in planetary boundary layer and in a model wind farm. Proc. Inst. Syst. Program. RAS (Proc. ISP RAS) 2019, 31, 177–186. (In Russian) [Google Scholar] [CrossRef]
- Fitch, A.C.; Olson, J.B.; Lundquist, J.K.; Dudhia, J.; Gupta, A.K.; Michalakes, J.; Barstad, I. Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon. Weather. Rev. 2012, 140, 3017–3038. [Google Scholar] [CrossRef]
- Fitch, A.C.; Lundquist, J.K.; Olson, J.B. Mesoscale influences of wind farms throughout a diurnal cycle. Mon. Weather. Rev. 2013, 141, 2173–2198. [Google Scholar] [CrossRef]
- Bodini, N.; Lundquist, J.K.; Moriarty, P. Wind plants can impact long-term local atmospheric conditions. Sci. Rep. 2021, 11, 22939. [Google Scholar] [CrossRef]
- Takle, E.S.; Rajewski, D.A.; Purdy, S.L. The Iowa Atmospheric Observatory: Revealing the Unique Boundary-Layer Characteristics of a Wind Farm. Earth Interact. 2019, 23, 1–27. [Google Scholar] [CrossRef]
- Lu, H.; Porté-Agel, F. Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys. Fluids 2011, 23, 065101. [Google Scholar] [CrossRef]
- Wu, Y.T.; Porté-Agel, F. Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parametrisations. Bound.-Layer Meteorol. 2011, 138, 345–366. [Google Scholar] [CrossRef]
- Revaz, T.; Porté-Agel, F. Large-Eddy Simulation of Wind Turbine Flows: A New Evaluation of Actuator Disk Models. Energies 2021, 14, 3745. [Google Scholar] [CrossRef]
- Breton, S.P.; Sumner, J.; Sørensen, J.N.; Hansen, K.S.; Sarmast, S.; Ivanell, S. A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20160097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabib, M.; Rasheed, A.; Kvamsdal, T. LES and RANS simulation of onshore bessaker wind farm: Analysing terrain and wake effects on wind farm performance. J. Phys. Conf. Ser. 2017, 625, 012032. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Liu, Y.; Li, L.; Chang, S.; Han, S.; Zhao, H.; Meng, H. Numerical simulation of wind turbine wake based on extended k-epsilon turbulence model coupling with actuator disc considering nacelle and tower. IET Renew. Power Gener. 2020, 14, 3834–3842. [Google Scholar] [CrossRef]
- Baungaard, M.; van der Laan, M.P.; Kelly, M. RANS modeling of a single wind turbine wake in the unstable surface layer. Wind Energ. Sci. 2022, 7, 783–800. [Google Scholar] [CrossRef]
- OpenStreetMap. Available online: https://www.openstreetmap.org/#map=15/54.2843/48.5974&layers=Y (accessed on 11 September 2022).
- Weather and Climate—Weather Forecasts, Weather News, Climate Data. Available online: http://www.pogodaiklimat.ru (accessed on 11 September 2022).
- Dongfang Electric Corporation (DEC). Available online: http://www.dongfang.com.cn (accessed on 11 September 2022).
- Star CMM+ Singapore. Available online: https://star-ccm.com (accessed on 11 September 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovalnogov, V.N.; Fedorov, R.V.; Chukalin, A.V.; Tsvetova, E.V.; Kornilova, M.I. Modeling and Investigation of the Effect of a Wind Turbine on the Atmospheric Boundary Layer. Energies 2022, 15, 8196. https://doi.org/10.3390/en15218196
Kovalnogov VN, Fedorov RV, Chukalin AV, Tsvetova EV, Kornilova MI. Modeling and Investigation of the Effect of a Wind Turbine on the Atmospheric Boundary Layer. Energies. 2022; 15(21):8196. https://doi.org/10.3390/en15218196
Chicago/Turabian StyleKovalnogov, Vladislav N., Ruslan V. Fedorov, Andrei V. Chukalin, Ekaterina V. Tsvetova, and Mariya I. Kornilova. 2022. "Modeling and Investigation of the Effect of a Wind Turbine on the Atmospheric Boundary Layer" Energies 15, no. 21: 8196. https://doi.org/10.3390/en15218196
APA StyleKovalnogov, V. N., Fedorov, R. V., Chukalin, A. V., Tsvetova, E. V., & Kornilova, M. I. (2022). Modeling and Investigation of the Effect of a Wind Turbine on the Atmospheric Boundary Layer. Energies, 15(21), 8196. https://doi.org/10.3390/en15218196