Research on Positioning Method of Coal Mine Mining Equipment Based on Monocular Vision
Abstract
:1. Introduction
2. Methods
2.1. Positioning Process of Tunneling Equipment Based on Monocular Vision
2.2. Image Feature Extraction and Matching Method in Complex Background
2.2.1. Image Preprocessing
Distortion Correction
Gaussian Filtering
2.2.2. Feature Extraction
Improved FAST Angle-Point Extraction
Improving on the BRIEF Descriptor
2.2.3. Mismatch Elimination of the RANSAC Algorithm
- Data from s samples are randomly drawn from the dataset, multiple models are fit and the most suitable unistress matrix H3×3 is calculated according to the principle of the most matrix data points.
- 2.
- Calculate the projection errors of all the data models H in the dataset and set the threshold value. If the error is less than the threshold, it meets the requirements, and it is added to the inner point set I, and the data greater than the threshold value are removed. The projection error function is:
- 3.
- If the number of inner points is insufficient, it is necessary to reselect the 4 pairs of matching points in the image and calculate the model H until the number of inner point sets exceeds the selected optimal inner point set threshold;
- 4.
- If the number of elements of the inner point set I is greater than the optimal inner point set condition, the number of inner points is recorded, and the iteration number k is updated;
- 5.
- If the number of iterations is greater than the maximum number K, the iteration ends; otherwise resume steps 1−5. The maximum number of iterations, K, is equal to:
2.3. Pose Position Solution Based on Depth Recovery
2.3.1. Position and Pose Measurement of Roadheader Robot
2.3.2. Position and Pose Measurement of Roadheader Robot
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, G.; Wang, H.; Ren, H.; Zhao, G.; Pang, Y.; Du, Y.; Zhang, J.; Hou, G. 2025 scenarios and development path of intelligent coal mine. J. China Coal Soc. 2018, 43, 295–305. [Google Scholar] [CrossRef]
- Jia, L.; Yu, Y.; Li, Z.-P.; Qin, S.-N.; Guo, J.-R.; Zhang, Y.-Q.; Wang, J.-C.; Zhang, J.-C.; Fan, B.-G.; Jin, Y. Study on the Hg0 removal characteristics and synergistic mechanism of iron-based modified biochar doped with multiple metals. Bioresour Technol. 2021, 332, 125086. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Ren, H.; Zhao, G.; Zhang, D.; Wen, Z.; Meng, L.; Gong, S. Research and practice on intelligent coal mine construction(primary stage). Coal Sci. Technol. 2019, 47, 1–36. [Google Scholar] [CrossRef]
- Wang, S.Y.; Mu, J.; Wu, M. Spatial pose kinematics model and simulation of boom-type roadheader. J. China Coal Soc. 2015, 40, 2617–2622. [Google Scholar] [CrossRef]
- Zhang, X.H.; Liu, B.X.; Zhang, C. Roadheader positioning method combining total station and strapdown inertial navigation system. J. Mine Autom. 2020, 46, 1–7. [Google Scholar] [CrossRef]
- Fu, S.C.; Li, Y.M.; Zong, K.; Zhang, M.J.; Wu, M. Accuracy analysis of UWB pose detection system for roadheader. Chin. J. Sci. Instrum. 2017, 38, 1978–1987. [Google Scholar] [CrossRef]
- Liu, C.; Fu, S.C.; Cheng, L.; Liu, D.; Sheng, Y.; Wu, M. Pose detection method based on hybrid algorithm of TSOA positioning principle for roadheader. J. China Coal Soc. 2019, 44, 1255–1264. [Google Scholar] [CrossRef]
- Reid, P.B.; Dunn, M.T.; Reid, D.C.; Ralston, J.C. Real-World Automation: New Capabilities for Underground Longwall Mining. In Proceedings of the Australasian Conference on Robotics and Automation 2010, Queensland University of Technology, Brisbane, Australia, 1 December 2010; pp. 1–8. [Google Scholar]
- Amo, I.A.D.; Letamendia, A.; Diaux, J. Nuevas resistencias comunicativas: La rebelión de los ACARP. Rev. Lat. De Comun. Soc. 2014, 69, 307–329. [Google Scholar]
- Hlophe, K.; du Plessis, F. Implementation of an autonomous un-derground localization system. In Proceedings of the 2013 6th Robotics and Mechatronics Conference (RobMech), Durban, South Africa, 30–31 October 2013; pp. 1–34. [Google Scholar]
- Du, Y.X.; Liu, T.; Tong, M.M.; Dong, H.B.; Zhou, L.L. Pose measurement system of boom-type roadheader based on machine vision. J. China Coal Soc. 2016, 41, 2897–2906. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, X.; Ma, H.; Zhang, G. Laser Beams-Based Localization Methods for Boom-Type Roadheader Using Underground Camera Non-Uniform Blur Model; IEEE Access: New York, NY, USA, 2020; Volume 8, pp. 190327–190341. [Google Scholar] [CrossRef]
- Xu, X.S.; Zhang, X.H.; Mao, Q.H.; Zheng, J.K.; Wang, M. Localization and orientation method of roadheader robot based on binocular vision. J. Xi’an Univ. Sci. Technol. 2020, 40, 781–789. [Google Scholar] [CrossRef]
- Kataoka, R.; Suzuki, R.; Ji, Y.; Fujii, H.; Kono, H.; Umeda, K. ICP-based SLAM Using Li DAR Intensity and Near-infrared Data. In Proceedings of the 2021 IEEE/SICE International Symposium on System Integration (SII), Iwaki, Japan, 11–14 January 2021; pp. 100–104. [Google Scholar]
- Senin, N.; Colosimo, B.M.; Pacella, M. Point set augmentation through fitting for enhanced ICP registration of point clouds in multisensor coordinate metrology. Robot. Comput.-Integr. Manuf. Robot. 2013, 29, 39–52. [Google Scholar] [CrossRef]
- Bouaziz, S.; Tagliasacchi, A.; Pauly, M. Sparse Iterative Closest Point. Comput. Graph. Forum 2013, 32, 113–123. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Zhu, C.; Huang, Q.; Ren, B.; Liu, J. A review of monocular visual odometry. Vis. Comput. 2019, 36, 1053–1065. [Google Scholar] [CrossRef]
- Guan, X.J.; Wang, X.L. Review of Vision-Based Navigation Technique. Aero Weapon. 2014, 5, 3–8+14. [Google Scholar] [CrossRef]
- Geng, C.; Yang, J.; Lin, J.; Yu, T.; Shi, K. An Improved ORB Feature Extraction Algorithm. J. Phys. Conf. Ser. 2020, 1616, 012026. [Google Scholar] [CrossRef]
- Wu, M. Research on optimization of image fast feature point matching algorithm. EURASIP J. Image Video Process. 2018, 2018, 106. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.H. Research on Key Technology of Target Location Based on Image Matching. Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2020. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, R.; Fang, X.; Hu, C.; Yang, X.; Zhang, X.; Zhang, C.; Yang, W.; Mao, Q.; Wan, J. Research on Positioning Method of Coal Mine Mining Equipment Based on Monocular Vision. Energies 2022, 15, 8068. https://doi.org/10.3390/en15218068
Yu R, Fang X, Hu C, Yang X, Zhang X, Zhang C, Yang W, Mao Q, Wan J. Research on Positioning Method of Coal Mine Mining Equipment Based on Monocular Vision. Energies. 2022; 15(21):8068. https://doi.org/10.3390/en15218068
Chicago/Turabian StyleYu, Rui, Xinqiu Fang, Chengjun Hu, Xiuyu Yang, Xuhui Zhang, Chao Zhang, Wenjuan Yang, Qinghua Mao, and Jicheng Wan. 2022. "Research on Positioning Method of Coal Mine Mining Equipment Based on Monocular Vision" Energies 15, no. 21: 8068. https://doi.org/10.3390/en15218068
APA StyleYu, R., Fang, X., Hu, C., Yang, X., Zhang, X., Zhang, C., Yang, W., Mao, Q., & Wan, J. (2022). Research on Positioning Method of Coal Mine Mining Equipment Based on Monocular Vision. Energies, 15(21), 8068. https://doi.org/10.3390/en15218068