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Abstract: In view of the insufficient characteristics and depth acquisition difficulties encountered
in the process of uniocular vision measurement, the posture measurement scheme of tunneling
equipment based on uniocular vision was proposed in this study. The positioning process of coal mine
tunneling equipment based on monocular vision was proposed to extract the environmental features
and match the features, and the RANSAC algorithm was used to eliminate the pair of mismatching
points. This was done to solve the optimized matching pair and realize the pose estimation of the
camera. The pose solution model based on the triangulation depth calculation method was proposed,
and the PNP solution method was adopted based on the three-dimensional spatial point coordinates
so as to improve the visual measurement accuracy and stability and lay the foundation for the
3D reconstruction of the roadway. This was done to simulate the downhole environment to build
an experimental verification platform for monocular visual positioning. The experimental results
showed that the position measurement accuracy of the uniocular visual roadheader positioning
method within 60 mm and 1.3◦ could realize the accurate registration of the point cloud in the global
coordinate system. The time required for the whole monocular visual positioning was only 179 ms,
so it had good real-time performance.

Keywords: monocular vision; 3D reconstruction; equipment position; intelligent tunneling

1. Introduction

The global positioning of underground mine tunneling equipment is the key to real-
izing directional navigation, automatic cutting and collaborative control between equip-
ment [1]. With the characteristics of limited underground operation space, numerous
equipment and insufficient light [2], it is difficult to realize roadway visualization and
equipment positioning, mainly due to the accurate detection and equipment positioning of
the underground environment [3].

In view of the positioning problem of tunneling equipment, many research institutions
and scholars have carried out fruitful research. Wu Miao China university’s mining team [4],
with the help of boring machine fuselage posture measurement, by placing a three-target
prism on the tunneling robot, using the whole station of three prism point observation
constituting three spatial features and inputting the observed feature points into a computer
for further processing, realized the boring machine in the roadway space pose solution.
Zhang Xuhui of Xi’an University of Science and Technology used the whole station and the
inertial guide for joint positioning and fused the measurement data of the whole station and
the Kalman filter to realize the accurate positioning of the roadheader [5]. However, due to
the simultaneous observation of the three-target prism, it is difficult to achieve measurement
in real time using the measurement method based on the whole station, and due to the
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existence of large-scale underground station moving problems, it has not been widely used.
Fu Shishen et al. put forward an initial autonomous positioning guidance method based
on UWB positioning [6], and Liu Chao et al. put forward a hybrid algorithm of UWB,
ranging and the TSOA principle to calculate the 3D spatial pose of the roadheader [7]. The
above pose measurement method has deficiencies such as time accumulation error and
unstable measurement accuracy. Reid P.B. [8] of Queensland Mining Technology Center in
Australia applied inertial navigation to the offset detection of hydraulic supports in a fully
mechanized mining face, providing a basis for the straightening of the scraper conveyor.
The Australian research organization used inertial navigation to obtain the dynamic pose
data of fully mechanized mining equipment and designed the LASC system [9] to measure
the pose of fully mechanized mining equipment. KHONZI [10] applied inertial navigation
to the autonomous positioning of underground equipment, but there is a large cumulative
error in the real-time positioning of the equipment using inertial navigation.

The sensors adopted in visual measurement systems mainly include monocular vision,
binocular vision and multiocular vision. By collecting the measured object or environmental
information, the real-time solution of the equipment position is realized by using post-stage
image processing technologies. With the help of a cross laser, Du Yuxin and others [11]
established the features and the fuselage position so as to realize the measurement of a
roadheader position in a tunneling roadway. Yang Wenjuan [12] set up two parallel laser
lines behind the roadway of Xi’an University of Science and Technology and proposed
a roadheader position solution model based on two points and three lines to realize the
accurate measurement of the roadheader position. A tunneling-robot-positioning method
based on binocular vision obtains roadway environmental features through a binocular
vision sensor, establishes a relative relationship model between the tunneling robot and
the roadway through collected roadway environmental image recognition information
and calculates the relative roadway position of the tunneling robot [13]. Aiming at the
problem of point cloud registration, Professor Besl of Stanford University in the United
States proposed an iterative closest-point algorithm, namely the ICP algorithm [14]. Since
then, there have been many improved algorithms based on ICP to achieve accurate point-
cloud matching. For example, Zhang [15] used a k–d tree to accelerate the corresponding
point search, which had good real-time performance. Senin Bouaziz et al. [16] used sparse
representation to improve the real-time performance and accuracy of ICP.

With the continuous progress of computer technology, intelligent visual perception
technology has been preliminarily applied to personnel monitoring and video recognition
in underground coal mines. The visual SLAM method [17,18] has shown great potential
in the field of robot localization. Therefore, this paper proposed a method of tunneling
equipment positioning and environmental reconstruction based on monocular vision. The
main contributions of this paper are as follows: (1) The positioning process of underground
mine tunneling equipment based on uniocular vision was proposed. (2) The improved
BRIEF (Binary Robust Independent Elementary Features) descriptor method was used to
realize the feature point matching on two frames of images in a complex environment,
and the location of the tunneling equipment was solved according to the method based on
depth recovery. (3) The ORB (Oriented Fast and Rotated Brief) feature point [19] extraction
method was adopted to realize the environmental 3D sparse-point cloud map construction.

The rest of this paper is arranged as follows: Section 2 describes the positioning
process of tunnel equipment. The improved FAST (accelerated segmented test feature)
corner extraction method combined with the improved BRIEF descriptor method is used
to match the environmental feature points. RANSAC algorithm is used to remove the
wrong matching points. The pole geometry method and triangulation depth recovery
method are used to solve the pose of the tunneling robot. In Section 3, monocular visual
feature extraction and three-dimensional reconstruction of roadway are verified through
experiments, and then pose measurement is realized. In Section 4, this paper and the
experiment are summarized.
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2. Methods
2.1. Positioning Process of Tunneling Equipment Based on Monocular Vision

The underground tunneling face of a coal mine has the characteristics of low illu-
mination, long and narrow channels and numerous pieces of equipment, which poses
challenges to the precise positioning of tunneling equipment. Therefore, with the coal
mine roadway environment as the feature, the tunneling equipment positioning method
with uniocular vision as the core was constructed. The monocular camera and the tun-
neling equipment were firmly connected. By collecting the environmental images of the
underground coal mine roadway, introducing the in-camera parameters with calibration in
advance, the image preprocessing method was used to realize image enhancement, filtering
and distortion correction, and then the ORB feature extraction method was used to extract
the feature points, and the RANSAC algorithm was used to eliminate the mismatched
points [20]. Finally, the pose estimation between adjacent frames was realized according to
the principle of polar geometry constraints. The three-dimensional spatial coordinates of
feature points were calculated by the triangulation depth calculation method. Then, the
position information of the tunneling equipment was calculated in real time. By solving the
pose of the tunneling robot, the 3D point-cloud registration between image sequences was
realized, and sparse 3D space points were recovered from the collected images. Positioning
process of coal mine heading equipment based on uniocular vision is shown in Figure 1.
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Figure 1. Positioning process of coal mine heading equipment based on uniocular vision. 
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2.2. Image Feature Extraction and Matching Method in Complex Background
2.2.1. Image Preprocessing

Due to the unstructured and complex environment of an underground coal mine
and the hardware differences between the monocular cameras themselves, it was easy to
produce image noise and image distortion in the image acquisition process. Further image
processing was needed to realize the image feature extraction and calculation, so the image
acquisition and pre-processing link was particularly critical. Image preprocessing mainly
includes camera de-distortion and an image filtering process. In the process of image
acquisition, a pinhole camera model will produce camera distortion, specifically divided
into radial distortion, eccentric distortion and thin prism distortion. By establishing a
mathematical model, camera lens distortion implements a camera lens distortion correction,
while the interference of random signals around the image will cause noise on the image,
so the filtering effect has a direct impact on the effectiveness and reliability of the visual
measurement system to ensure the extraction and calculation of spot features.

Distortion Correction

The flaw on the camera lens was the main cause of the radial distortion. Due to its
particularity, the closer to the outside, the more diffuse or concentrated inside. Let the
tangential distortion be δxr, δyr, thus the mathematical model is shown in Equation (1):{

δxr = x(k1(x + y)2 + k2(x + y)4 + · · ·
δyr = y(k1(x + y)2 + k2(x + y)4 + · · ·

(1)

where the coefficient k1, k2 . . . represents the radial distortion coefficient.
Both radial and tangential distortion were included, mainly because the camera’s

optical center and geometric center did not coincide. Let the eccentric distortion be A, thus
the mathematical model is shown in Equation (2):{

δxd = p1(3x2 + y2) + 2p2xy + · · ·
δyd = 2p1xy + p2(3x2 + y2) + · · · (2)

An effective camera model with all distortion types could not be established, so we
considered integrating nonlinear models in the camera calibration process. Too many
nonlinear parameters will cause instability in the solution, so at most, two distortion factors
were considered, and the improvement method of fusion radial distortion and eccentric
distortion was adopted.

For the above lens distortion analysis, the correction model combining the two models is:{
δx(x, y) = δxr + δxd
δy(x, y) = δyr + δyd

(3)

Figure 2 shows the image before and after the distortion correction. It can be seen that
the monocular camera had a more obvious pillow-shaped distortion, which could better
recover the real scene after the correction.
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Figure 2. Aberration correction contrast. (a) Before distortion correction; (b) after distortion correction.

Gaussian Filtering

Gaussian filtering builds mathematical models to transform the energy of the image
data and filter out the low-energy part of the noise. The 3 × 3 Gaussian filter template is
shown in Equation (4):

1
16
×

 1 2 1
2 4 2
1 2 1

 (4)

Based on the selected kernel size k and the size of the weight coefficient, the weighted
average is calculated by the method of each pixel multiplied by the associated weight
with the weighted average instead of the current pixel value. The weight coefficients are
obtained from a one-dimensional Gaussian function.

G(x) =
1√

2πσ2
exp

(
−x2

2σ2

)
(5)

In Equation (5), σ represents the standard deviation and x represents the pixels in the
image. For 2D images, the 2D Gaussian function is established as:

G(µ, v) =
1√

2πσ2
exp

(
−
(
µ2 + v2)
2σ2

)
(6)

In Equation (6), A represents the standard deviation, B represents the pixel abscissa in
the image and C represents the pixel ordinate in the image.

By making σ = 5 and the Gaussian filter core k = 3, the acquired image can be filtered to
compare the filtered image with the pre-filtered image. The comparison results are shown
in Figure 3.
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2.2.2. Feature Extraction

Due to the difficulty of estimating the camera motion directly from the matrix changes,
selecting the appropriate feature extraction algorithm was crucial for image matching and
the pose solution calculation. The feature points included corners, blocks and edges, etc.
The ORB feature extraction [21] belonged to diagonal feature extraction, and the feature
point description was performed by improving the FAST feature extraction and the BRIEF
descriptor algorithm. The experiments showed that ORB performed better than the BRIEF
and SURF methods. By analyzing the feature extraction method, the ORB feature extraction
principle could realize fast feature extraction and description, so the ORB feature extraction
method was adopted.

Improved FAST Angle-Point Extraction

A pixel point p was first selected in the image and its pixel brightness was Hp. The
judgment threshold for corner points was further set at 20% of Hp. Then, the pixel p was
selected as the center point according to the setting threshold, and 16 pixels were selected
on a neighborhood circle with a radius of 3 pixels.

According to the above selection principle, the feature point was judged. If the
brightness T of N points on the neighborhood circle met T > Hp + 20%Hp or T < Hp +
20%Hp, the p point could be regarded as the corner point, while it was not the characteristic
corner point. The selection was cyclic according to the above selection principle, and the
image was traversed until the FAST angles that met the requirements were extracted.

Further, the improved FAST method in ORB achieved scale invariance by constructing
image pyramids and detecting corners at each layer of the pyramid and realized its rotation
invariance with the help of the grayscale centroid-of-mass method.

The specific implementation process of the grayscale centroid method is as follows:
The moment of defining an image block in an image block B is:

mpq = ∑
x,y∈B

xpyq I(x, y), p, q ∈ {0, 1} (7)

In the formula, x, y represents the pixel coordinates, and I (x, y) represents the gray
value of the pixel coordinates.

The image block center of mass is further obtained by moment calculation:

C =

(
m10

m00
,

m01

m00

)
(8)

The direction vector
→

OC is obtained from the geometric center and center of mass C of
the image block B and can be used to represent the feature point direction:

θ = arctan
(

m01

m10

)
(9)

The above improved FAST algorithm can describe the FAST, which improves the
robustness of the algorithm.

Improving on the BRIEF Descriptor

After obtaining the feature points, N pairs of points are selected around the key points
in the form of BRIEF. The key point P is selected as the center, and the radius is d, and n
points are randomly selected in a certain neighborhood range for comparison. The selection
conditions are as follows:

Suppose A, B, Ha, Hb are the gray scale of A, B,

F(P(A, B)) =
{

0 Ha > Hb
1 Ha ≤ Hb

(10)
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The n-point pair (xi, yi) is defined as the 2 × n matrix S according to the above
selection conditions:

S =

[
x1 x2 · · ·xn
y1 y2 · · ·yn

]
(11)

The obtained θ pair S matrix rotation is used to obtain:

Sθ = RθS (12)

In the formula, Rθ is the rotation matrix of the angle θ.
Thus, ORB feature point extraction and descriptor establishment are realized. Through

the established descriptor of feature extraction, the robot position acquisition was then
realized by the position solution algorithm. However, because the perspective changed
greatly or had similar regions, the mismatching situation was prone in the process of feature
matching, so the mismatching situation needed to be eliminated.

2.2.3. Mismatch Elimination of the RANSAC Algorithm

The feature matching process is a particularly critical step in the visual SLAM al-
gorithm, but there is a mismatching situation, so the RANSAC algorithm was used to
eliminate the mismatching. The specific steps of the RANSAC algorithm are as follows:

1. Data from s samples are randomly drawn from the dataset, multiple models are fit
and the most suitable unistress matrix H3×3 is calculated according to the principle of
the most matrix data points.

s

 x
′

y
′

z;

 =

 h11 h12 h13
h21 h22 h32
h31 h32 h33

 x
y
z

 (13)

As in Equation (13), make h33 = 1 and normalize the matrix H3×3. Since there are eight
unknowns in the matrix, it should be solved by at least four sets of matching points in the
extracted image.

2. Calculate the projection errors of all the data models H in the dataset and set the
threshold value. If the error is less than the threshold, it meets the requirements, and
it is added to the inner point set I, and the data greater than the threshold value are
removed. The projection error function is:

n

∑
i=1

(
x
′
i −

h11xi + h12yi + h13

h31xi + h32yi + h33

)2
+

(
y
′
i −

h21xi + h22yi + h23

h31xi + h32yi + h33

)2
(14)

3. If the number of inner points is insufficient, it is necessary to reselect the 4 pairs of
matching points in the image and calculate the model H until the number of inner
point sets exceeds the selected optimal inner point set threshold;

4. If the number of elements of the inner point set I is greater than the optimal inner
point set condition, the number of inner points is recorded, and the iteration number
k is updated;

5. If the number of iterations is greater than the maximum number K, the iteration ends;
otherwise resume steps 1−5. The maximum number of iterations, K, is equal to:

K =
log(1− P)
log 1− wm (15)

In Equation (15), the confidence degree of P is made to be 0.0995, w the “inner point”
ratio and m the minimum number of samples required to calculate the model.
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2.3. Pose Position Solution Based on Depth Recovery
2.3.1. Position and Pose Measurement of Roadheader Robot

According to the extraction matching point for the camera pose estimation, as shown
in Figure 4 below, good feature points were paired from two pictures according to the
feature points in the two-dimensional image correspondence, the camera image between
the frame pose was restored, and the camera posture solution was preliminarily completed
in order to realize the uniocular visual pose measurement based on the feature point depth.
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Figure 4. Constraints on the polar geometry.

Assuming the two frames of images are C1 and C2 during the camera motion, the
motion from images C1 to C2 is R t, and the two cameras are centered at O1 and O2,
respectively. p1 and p1 are the corresponding feature points obtained by matching the P
points between the two images, respectively, and O1p1 and O2p2 are connected to obtain

the rays
→

O1 p1 and
→

O2 p2 intersecting at the point P.
The plane composed of the three points of O1, O2 and P is called the polar plane, and

the intersection between O1, O2 and the image plane C1, C2 is e1 and e2, respectively. e1 and
e2 are the poles, and O1O2 is the baseline.

The intersection lines l1 and l2 between the pole plane and the two image planes C1
and C2 are the pole line.

The coordinates of this spatial point P can be expressed as:

P = [x, y, z]T (16)

According to the camera imaging model, the two-pixel p1·p2 locations are as follows:

s1 p1 = k2 p, s2 p2 = k2(RP + t) (17)

In Equation (17), k2 is the in-camera parameter, R, and t is the rotation matrix, and
the translation matrix of the camera motion multiplied by the non-zero constant can be
reduced to:

p1 = k2 p, p2 = k(RP + t) (18)

Let the pixel point normalized plane coordinate x1 = k−1
2 p1, x2 = k−1

2 p2, bring x1, x2
into Formula (18), and multiply by xT

2 t∧ on both sides:

xT
2 t∧x2 = xT

2 t∧Rx1 (19)

In Equation (19), the t∧x2 vector is perpendicular to t and x2, so it is 0, then:

xT
2 t∧Rx1 = 0 (20)

Bring p1 and p2 in again with:

pT
2 k−T

2 t∧Rk−1
2 p1 = 0 (21)
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In the formula, p1, p2 are the corresponding feature points obtained by matching P
points between two images, and k2 is the in-camera parameter.

The above Equation (20) and Equation (21) are collectively referred to as the polar
constraint, indicating the geometric meaning of the O1, P and O2 three common planes, and
by including the rotation matrix R and translation matrix t, the formula can be obtained:

xT
2 Ex1 = pT

2 Fp1 = 0 (22)

E = tˆR is the essential matrix and A is the basic matrix, so the camera pose solution
calculation can be simplified as follows: solve the essential matrix E or the basic matrix F
according to the pixel position of the pairing point, and then solve the camera pose R and t
combined with the solved E or F substitution Formula (22).

According to the principle of monocular visual measurement analysis, one cannot
obtain pixel depth information through only one single picture, so this needs to be con-
ducted by triangulation. According to the frame between postures, to extract the roadway
characteristic point depth estimation, triangulation between two perspective angles and
the realization of the point distance calculation is required, thus the measurement principle
is as shown in Figure 5:

Energies 2022, 15, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 5. Schematic representation of the triangulation depth recovery. 

According to the two frames in Figure 5, the two images are C1 and C2, with the left 
being C1 for the previous moment and the right being moment C2, p1 and p2, respectively, 
show the P point in the pixel coordinates in the previous and later point, and O1 and O2 
are the center of the camera, and the two-image camera posture transformation matrix R 
and t, and the calibration in the camera parameters for k2 are obtained according to the 
visual odometer. According to the definition of polar geometry, the two points p1 and p2 
of the normalized plane can satisfy the following relationship: 

1 1 2 2d p d Rp t= +  (23)

where d1 and d2 represent the camera depth value of the point P at the previous moment 
and the second moment, respectively. Since R and t are solved according to the visual 
odometer, Equation (23) is written in a matrix form: 

1
1 2

2

d
R p p t

d
 

− =   
 

  (24)

Further, Formula (24) is written as a system of linear equations such as: 

Ax b=  (25)

Among A = [−R · p1   p2], x = [d1   d2]T, b = t. 
The optimization function can be built to solve the depth: 

( )f x Ax b= −  (26)

According to the above formula, the x result can be obtained as follows: 

( ) 1T Tx A A A b
−

=  (27)

The matrix 𝐴்𝐴 is a non-singular matrix, and the feature point depth solution of R 
and t implemented for the extracted roadway images is obtained by the combination of 
the visual odometer calculation. In addition, when A is a singular matrix, the LM algo-
rithm is used to transform A into a non-singular matrix before solving it. After the depth 
value solution is realized, the tunneling robot pose solution based on the depth recovery 
can be realized through the 3D–2D method. 

2.3.2. Position and Pose Measurement of Roadheader Robot 
The monocular visual odometer solves the camera pose by matching the correspond-

ence between the features, namely, the rotation matrix R and the translation matrix t. The 
general solution methods are 2D–2D as well as 2D–3D. Since the spatial coordinates of the 
feature points are found according to the method of triangulation depth, the 3D–2D 
method, namely, the PNP algorithm, was used to use the matching relationship between 
the recovered feature points’ 3D-point coordinates and the image feature points to opti-
mize and minimize the camera attitude according to the reprojection error. 

1O

2O

P

1p
2p

l

Figure 5. Schematic representation of the triangulation depth recovery.

According to the two frames in Figure 5, the two images are C1 and C2, with the left
being C1 for the previous moment and the right being moment C2, p1 and p2, respectively,
show the P point in the pixel coordinates in the previous and later point, and O1 and O2 are
the center of the camera, and the two-image camera posture transformation matrix R and t,
and the calibration in the camera parameters for k2 are obtained according to the visual
odometer. According to the definition of polar geometry, the two points p1 and p2 of the
normalized plane can satisfy the following relationship:

d1 p1 = d2Rp2 + t (23)

where d1 and d2 represent the camera depth value of the point P at the previous moment
and the second moment, respectively. Since R and t are solved according to the visual
odometer, Equation (23) is written in a matrix form:

[
−R·p1 p2

][d1
d2

]
= t (24)

Further, Formula (24) is written as a system of linear equations such as:

Ax = b (25)

Among A = [−R · p1 p2], x = [d1 d2]T, b = t.
The optimization function can be built to solve the depth:

f (x) = ‖Ax− b‖ (26)
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According to the above formula, the x result can be obtained as follows:

x =
(

AT A
)−1

ATb (27)

The matrix AT A is a non-singular matrix, and the feature point depth solution of R
and t implemented for the extracted roadway images is obtained by the combination of the
visual odometer calculation. In addition, when A is a singular matrix, the LM algorithm
is used to transform A into a non-singular matrix before solving it. After the depth value
solution is realized, the tunneling robot pose solution based on the depth recovery can be
realized through the 3D–2D method.

2.3.2. Position and Pose Measurement of Roadheader Robot

The monocular visual odometer solves the camera pose by matching the correspon-
dence between the features, namely, the rotation matrix R and the translation matrix t. The
general solution methods are 2D–2D as well as 2D–3D. Since the spatial coordinates of
the feature points are found according to the method of triangulation depth, the 3D–2D
method, namely, the PNP algorithm, was used to use the matching relationship between
the recovered feature points’ 3D-point coordinates and the image feature points to optimize
and minimize the camera attitude according to the reprojection error.

The spatial coordinates of the same feature point Xk
i and Xk−1

i in the two frame pictures
at the ck and ck-1 moment camera frame where the rotation matrix is R and the flat matrix
is t. According to the motion relationship of different frame images, the following equation
is established:

Xk
i = R ∗ Xk−1

i + t (28)

For the feature points recovered by triangulation, Xk
i is normalized, where Xk

i is the
normalized coordinate of Xk

i and zk
i is the modular length of Xk

i in the z-axis direction, and
thus this is obtained according to the above formula:

Xk
i = R ∗ Xk−1

i + t (29)

The transformation matrices R and t are decomposed into three row vectors, Rh and
th, where h ∈ {1, 2, 3}, and this is brought into the upper formula, eliminating zk

i by the
elimination method and obtaining the following system of equations:

(
R1 − Xk

i R1

)
Xk−1

i + t1 − Xk
i t3 = 0(

R2 − Xk
i R3

)
Xk−1

i + t1 − Xk
i t3 = 0

(30)

According to the above Equation (30), through at least six pairs of matching points,
the linear solution of the pose transformation matrix T can be realized, that is, the direct
linear transformation method can be realized.

3. Results and Discussion

For the roadway environment characteristics texture, the tunneling robot tunnel
environment perception is difficult. Through the study of visual feature extraction, using
the ORB feature point extraction method of 3D sparse point cloud map construction, the
3D reconstruction method based on single eye visual SLAM was verified. For the corridor
environment simulation roadway, the experimental verification platform was set to evaluate
the effectiveness and real-time performance of the method.

Based on the uniocular vision tunneling robot 3D reconstruction experiment, in the
corridor control robot for continuous motion, using the monocular visual image feature
extraction matching method and 3D reconstruction method of the tunneling robot in the
running image processing and solution, the function points, by calculating the global
coordinate system of the 3D point cloud and the results in the visual interface, the uniocular
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vision roadway 3D reconstruction effect was completed and the sparse 3D point map was
evaluated. In order to verify the reliability of the monocular visual feature extraction and
3D reconstruction, the 3D reconstruction experiment of the tunneling robot was carried
out in a corridor, and the picture information of the roadway was collected immediately
during the movement process, and the feature point matching and point cloud registration
were completed. As shown in Figure 6, some pictures of feature points in the roadway
were extracted during the robot’s movement.
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Figure 6 shows the matching process of four adjacent frames. It can be seen that in the
dark corridor environment, the roadway feature extraction effect obtained by the ORB feature
extraction method is represented in color in the figure. After mismatching and elimination,
fewer feature points were extracted to meet the requirements of the ORB feature extraction.
Based on the feature point extraction, the feature point matching between each picture frame
was realized, and the average matching time of each of the two frames was 179 ms, which
met the real-time requirements of feature extraction and matching.

Figure 7 shows the process of the 3D sparse-point cloud-map-mapping process for the
monocular visual SLAM realized with the help of the ORB feature extraction.
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Figure 7. Three-dimensional sparse-point cloud map construction process.

The green part of the feature extraction interface is the extracted and matched feature
points of the corridor and corridor, the green part of the map state interface is the track
of the robot and the red points are the three-dimensional sparse roadway points under
construction. It can be seen that the visual feature points extracted on each frame picture
were relatively rich, and the robot’s movement track was relatively stable with good
stability, which is not easy to obtain in feature loss.

Based on the above feature extraction and matching process, the optimized corridor
3D sparse-point cloud map was obtained. Figure 8a shows the top view of the corridor,
and Figure 8b shows the construction of the corridor. It can be seen that the trend was
roughly consistent with the direction of the corridor, and the roadway was constructed
using the uniocular visual SLAM method based on ORB. Due to the small amount of feature
extraction and mismatching elimination, the sparse 3D reconstruction of the tunnel was
thus realized.
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Figure 8. Three-dimensional sparse reconstruction. (a) Top view of the corridor; (b) face view of the
corridor; (c) side view of the corridor.
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Figure 8a–c shows the constructed three views of the sparse-point cloud for the three-
dimensional roadway realized by monocular vision, respectively. The black point cloud
shows the roadway feature points extracted and registered, the green line is the robot
track, the green box is the real-time pose of the robot and the red points are the feature
points under construction. The global map of the roadway composed of sparse point cloud
could be found by overlooking, from a side view and face view, which was roughly in line
with the roadway trend, and the three-dimensional roadway reconstruction based on the
sparse-point cloud was initially realized.

Using the monocular visual SLAM method based on ORB feature extraction, the
position measurement accuracy was within ±60 mm, and the angle measurement error
was within ±1.3◦. The robot position and the boundary perception of the point cloud in
the global coordinate system in the system was obtained from the real-time acquisition of
the ORB-based feature image reconstruction time, which was 179 ms.

4. Conclusions

According to the process of monocular visual SLAM, this paper introduced in detail
many processes, such as image preprocessing, feature extraction, feature matching and
mismatching elimination, pose solution calculation and sparse 3D point-cloud reconstruc-
tion. This paper also simulated the experimental verification platform of the downhole
environment and set up a platform for the verification of the monocular visual positioning
in the laboratory.

The experimental results showed that the position measurement accuracy of the unioc-
ular visual roadheader positioning method was within±60 mm and the angle measurement
error was within ±1.3◦, and that it could realize the accurate registration of the point cloud
under the global coordinate system. The required time of the whole monocular visual
positioning was only 179 ms, so it had good real-time performance. However, there was
still a certain gap between the environmental simulation and the real excavation face in
the experimental verification stage. Coal walls on both sides of an underground coal mine
roadway are not very smooth, and many large pieces of equipment would also have a
certain influence on the field of view of the monocular camera, so this will be continuously
improved in further research.
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