Exergoeconomic and Exergoenvironmental Analysis of a Novel Power and Cooling Cogeneration System Based on Organic Rankine Cycle and Ejector Refrigeration Cycle
Abstract
:1. Introduction
2. System Description
3. Mathematical Models and Assumptions
3.1. Assumptions
- (1)
- The system is steady, regardless of heat loss and pressure drop in heat exchangers and connecting pipes.
- (2)
- The working medium at the outlet of the separator and refrigeration evaporator is saturated.
- (3)
- The compression process in the compressor and expansion process in the turbine are non-isentropic processes.
- (4)
- The throttle valve’s throttling process is equal enthalpy.
- (5)
- The refrigerant in the ejector is in a one-dimensional steady flow state, and the ejector’s working process meets the law of conservation of energy, momentum, and energy.
- (6)
- The ejector inlet and outlet velocities are ignored, and the primary and secondary flow process in the mixing chamber is isobaric.
- (7)
- Three efficiencies represent the irreversible loss of the injector: the isentropic efficiency of the nozzle and the diffusion section and the mixing section efficiency.
- (8)
- The pinch temperature difference in the heat absorption process is (ΔTPP) 10 K, the pinch temperature difference in the heat transfer process of IHE, the condensation process of condenser and the heat absorption process of the evaporator is 5 K, and the superheat (Tsup) of the steam entering the turbine is 5 K [11,12].
3.2. Energy Model of the System
3.3. Exergoeconomic Model
3.4. Exergoenvironmental Model
4. Model Validation
5. System Optimization
6. Results and Discussion
6.1. Exergy Analysis
6.2. Exergoeconomic Analysis
6.3. Exergoenvironmental Analysis
6.4. Parameter Analysis
6.5. System Comparison
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Nomenclature | d | Diffuser | |
symbols | E | Evaporation | |
A | Area (m2) | th | Thermal |
Exergy cost | ex | Exergy | |
Unit exergy cost | F | Fuel | |
Exergy (kW) | in | Inlet | |
f | Exergoeconomic factor | m | Mixing chamber |
h | Enthalply | n | Noozle |
Mass flow rate (kg/s) | out | Outlet | |
P | Pressure | pp | Pinch point |
Heat transfer (kW) | sup | Superheating | |
Cooling output (kW) | T | Turbine | |
r | Ration | 1-21 | State points |
s | Entropy (kJ/kg.k) | 0 | Ambient state |
T | Temperature | CCP | Combined cooling and power supply system |
x | Dryness | ERC | Ejector refrigeration cycle |
U | Total heat transfer coeffiCient | CON | Condenser |
W | Work (kW) | LP | Low pressure pump |
Wnet | Net work (kW) | HP | High pressure pump |
Total cost rate of system Investment and operation | IHE | Internal heat exchanger | |
Greek letters | LPVG | Low pressure steam generator | |
η | Efficiency | HPVG | High pressure steam generator |
μ | Entriainment coeffcient | SEP | Separator |
Δ | Difference | TUR | Turbine |
Sybcripts | THV | Throttle valve | |
cond | Condenser | EVA | Evaporator |
cr | Critical | EJCCOM | EjectorCompressor |
D | Destruction |
References
- Wang, Q.; Wu, W.; Li, D.; Wang, J.; He, Z. Thermodynamic analysis and optimization of four organic flash cycle systems for waste heat recovery. Energy Convers. Manag. 2020, 221, 113171. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Zhao, P.; Dai, Y. Thermodynamic analysis of a new combined cooling and power system using ammonia–water mixture. Energy Convers. Manag. 2016, 117, 335–342. [Google Scholar] [CrossRef]
- Yu, W.; Wang, H.; Ge, Z. Comprehensive analysis of a novel power and cooling cogeneration system based on organic Rankine cycle and ejector refrigeration cycle. Energy Convers. Manag. 2021, 232, 113898. [Google Scholar] [CrossRef]
- Tashtoush, B.; Alshare, A.; Al-Rifai, S. Performance study of ejector cooling cycle at critical mode under superheated primary flow. Energy Convers. Manag. 2015, 94, 300–310. [Google Scholar] [CrossRef]
- Zhang, T.; Mohamed, S. Conceptual design and analysis of hydrocarbon-based solar thermal power and ejector cooling systems in hot climates. J. Sol. Energy Eng. 2015, 137, 021001. [Google Scholar] [CrossRef]
- Wang, J.; Dai, Y.; Sun, Z. A theoretical study on a novel combined power and ejector refrigeration cycle. Int. J. Refrig. 2009, 32, 1186–1194. [Google Scholar] [CrossRef]
- Zheng, B.; Weng, Y.W. A combined power and ejector refrigeration cycle for low temperature heat sources. Sol. Energy 2010, 84, 784–791. [Google Scholar] [CrossRef]
- Yu, W.; Xu, Y.; Wang, H.; Ge, Z.; Xia, Y. Thermodynamic and thermoeconomic performance analyses and optimization of a novel power and cooling cogeneration system fueled by low-grade waste heat. Appl. Therm. Eng. 2020, 179, 115667. [Google Scholar] [CrossRef]
- Li, D.; Groll, E.A. Transcritical CO2 refrigeration cycle with ejector-expansion device. Int. J. Refrig. 2005, 28, 766–773. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Tian, G.; Xu, Z. Exergy analysis of Joule-Thomson cryogenic refrigeration cycle with an ejector. Energy 2009, 34, 1864–1869. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Y.; Liu, Q.; Yuanyuan, Z. Thermodynamic and thermo-economic analysis of dual-pressure and single pressure evaporation organic Rankine cycles. Energy Convers. Manag. 2018, 177, 718–736. [Google Scholar] [CrossRef]
- Li, J.; Ge, Z.; Duan, Y.; Yang, Z.; Liu, Q. Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles. Appl. Energy 2018, 217, 409–421. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, J.; Lin, G. Exergy analysis, parametric analysis and optimization for a novel combined power and ejector refrigeration cycle. Appl. Therm. Eng. 2009, 29, 1983–1990. [Google Scholar] [CrossRef]
- Goodarzi, M.; Gheibi, A.; Motamedian, M. Comparative analysis of an improved two-stage multi-inter-cooling ejector-expansion trans-critical CO2 refrigeration cycle. Appl. Therm. Eng. 2015, 81, 58–65. [Google Scholar] [CrossRef]
- Jadidi, E.; Manesh, M.H.K.; Delpisheh, M. Advanced exergy, exergoeconomic, and exergoenvironmental analyses of integrated solar-assisted gasification cycle for producing power and steam from heavy refinery fuels. Energies 2021, 14, 8409. [Google Scholar] [CrossRef]
- Ahmadi, P.; Dincer, I. 1.8 Exergoeconomics. In Comprehensive Energy Systems; Dincerl, I., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 340–376. [Google Scholar]
- Javadi, M.A.; Khodabakhshi, S.; Ghasemiasl, R.; Jabery, R. Sensivity analysis of a multi-generation system based on a gas/hydrogen-fueled gas turbine for producing hydrogen, electricity and freshwater. Energy Convers. Manag. 2022, 252, 115085. [Google Scholar] [CrossRef]
- Javadi, M.; Najafi, N.J.; Abhari, M.K.; Jabery, R.; Pourtaba, H. 4E analysis of three different configurations of a combined cycle power plant integrated with a solar power tower system. Sustain. Energy Technol. Assess. 2021, 48, 101599. [Google Scholar] [CrossRef]
- Bejan, A.; Tsatsaronis, G.; Moran, M.J. Thermal Design and Optimization; John Wiley & Sons: Toronto, ON, Canada, 1995. [Google Scholar]
- Shamoushaki, M.; Aliehyaei, M.; Taghizadeh-Hesary, F. Energy, exergy, exergoeconomic, and exergoenvironmental assessment of flash-binary geothermal combined cooling, heating and power cycle. Energies 2021, 14, 4464. [Google Scholar] [CrossRef]
- Mohammadkhani, F.; Shokati, N.; Mahmoudi, S.; Yari, M.; Rosen, M.A. Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles. Energy 2014, 65, 533–543. [Google Scholar] [CrossRef]
- Misra, R.D.; Sahoo, P.K.; Gupta, A. Thermoeconomic evaluation and optimization of a double-effect H2O/LiBr vapour-absorption refrigeration system. Int. J. Refrig. 2005, 28, 331–343. [Google Scholar] [CrossRef]
- Al-Sayyab, A.K.S.; Navarro-Esbrí, J.; Soto-Francés, V.M.; Mota-Babiloni, A. Conventional and advanced exergoeconomic analysis of a compound ejector-heat pump for simultaneous cooling and heating. Energies 2021, 14, 3511. [Google Scholar] [CrossRef]
- Marques, A.S.; Carvalho, M.; Ochoa, Á.A.V.; Souza, R.J.; dos Santos, C.A.C. Exergoeconomic assessment of a compact electricity-cooling cogeneration unit. Energies 2020, 13, 5417. [Google Scholar] [CrossRef]
- Ahmadi, P.; Dincer, I. Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA). Energy 2010, 35, 5161–5172. [Google Scholar] [CrossRef]
- Dincer, I.; Rosen, M.A.; Al-Zareer, M. 1.9 Exergoenvironmental analysis. In Comprehensive Energy Systems; Dincer, I., Ed.; Comprehensive Energy Systems; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Mark, G.; Suzanne, E.; Marcel, C. Eco-Indicator 99 Manual for Designers—A Damage Oriented Method for Life Cycle Impact Assessment; Methodology Report; PRé Consultants: Amersfoort, The Netherlands, 2000. [Google Scholar]
- Paraskevas, D.; Kellens, K.; Renaldi, R.; Dewulf, W.; Duflou, J. Closed and Open Loop Recycling of Aluminium: A Life Cycle Assessment Perspective; Technische Universität Berlin: Berlin, Germany, 2013; pp. 305–310. [Google Scholar]
- Cidade Cavalcanti, E.J. Exergoeconomic and exergoenvironmental analyses of an integrated solar combined cycle system. Renew. Sustain. Energy Rev. 2017, 67, 507–519. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Mehrpooya, M. A comprehensive exergy-based evaluation on cascade absorption- compression refrigeration system for low temperature applications—Exergy, exergoeconomic, and exergoenvironmental assessments. J. Clean. Prod. 2020, 246, 119005. [Google Scholar] [CrossRef]
- Manente, G.; Lazzaretto, A.; Bonamico, E. Design guidelines for the choice between single and dual pressure layouts in organic Rankine cycle (ORC) systems. Energy 2017, 123, 413–431. [Google Scholar] [CrossRef]
- Huang, B.J.; Chang, J.M.; Wang, C.P.; Petrenko, V.A. A 1-D analysis of ejector performance. Int. J. Refrig. 1999, 22, 354–364. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, S.; Fei, Z.; Zhang, W.; Shao, L.; Sardari, F. Thermodynamic performance analysis a power and cooling generation system based on geothermal flash, organic Rankine cycles, and ejector refrigeration cycle; application of zeotropic mixtures. Sustain. Energy Technol. Assess. 2020, 40, 100749. [Google Scholar] [CrossRef]
- Arabkoohsar, A.; Sadi, M. A solar PTC powered absorption chiller design for Co-supply of district heating and cooling systems in Denmark. Energy 2020, 193, 116789. [Google Scholar] [CrossRef]
Equipment | PEC Functions ($) |
---|---|
VG | |
Condenser | |
IHE | |
Evaporator | |
Turibe | |
Pump | |
THV | |
Compressor |
Component | Cost Balance Equation | Supplementary Equation |
---|---|---|
Condenser | ||
Lppump | ||
IHE | ||
LPVG | ||
Separator | ||
Hppump | ||
HPVG | ||
Turibe | ||
THV | ||
Evaporator | ||
Compressor | ||
Ejector |
Equipment | Material | Proportion of Materials | Eco-Indicator mpts/kg | Points mpts/kg |
---|---|---|---|---|
Condenser | Steel | 100% | 86 | 86 |
Pump | Steel Cast iron | 35% 65% | 86 240 | 186 |
Generator | Steel Cast iron Copper Aluminum | 20% 60% 15% 5% | 86 240 1400 780 | 410 |
Turbine | Steel Steel high alloy | 25% 75% | 86 240 | 202 |
Evaporator | Steel | 100% | 86 | 86 |
Compressor | Steel Steel low alloy Cast iron | 33% 45% 22% | 86 110 240 | 131 |
Component | Material mpts/kg | Process mpts/kg | Disposal mpts/kg | Weight Function |
---|---|---|---|---|
Condenser | 86 | 12.1 | −70 | |
Pump | 410 | 12.1 | −70 | |
Generator | 202 | 16.9 | −70 | |
Turbine | 86 | 11.7 | −70 | |
Evaporator | 131 | 12.1 | −70 | |
Compressor | 131 | 11.7 | −70 |
Component | Environmental Impact Balance Equation | Supplementary Equation |
---|---|---|
Condenser | ||
Lppump | ||
IHE | ||
LPVG | ||
Separator | ||
Hppump | ||
HPVG | ||
Turbine | ||
THV | ||
Evaporator | ||
Compressor | ||
Ejector |
Title 1 | Present Work | Reference | Error (%) |
---|---|---|---|
PHP (bar) | 6.65 | 6.66 | 0.15 |
PLP (bar) | 4.14 | 4.13 | −0.24 |
mhp (kg/s) | 43.71 | 43.7 | −0.02 |
mlp (kg/s) | 36.0 | 36.0 | 0 |
Tsat_HP (°C) | 73.3 | 73.3 | 0 |
ΔTsh_hp (°C) | 2.0 | 2.0 | 0 |
Tsat_LP (°C) | 56.2 | 56.2 | 0 |
ΔTsh_Lp (°C) | 0.01 | 0.01 | 0 |
Tout (°C) | 60.7 | 60.2 | −0.82 |
Wnet (kW) | 969.3 | 973.1 | 0.39 |
Φ (%) | 49.23 | 49.9 | 1.3 |
ηth (%) | 5.88 | 5.82 | −1.0 |
ηsys (% | 2.89 | 2.905 | 0.52 |
Pg, Mpa (Tg, °C) | Te (°C) | Tc (°C) | μ = ms/mp | Error (%) | |
---|---|---|---|---|---|
Present Work | Experiment | ||||
0.604(95) | 8 | 31.3 33.6 41 | 0.4175 0.3570 0.2097 | 0.4377 0.3457 0.2043 | −4.62 3.27 2.64 |
0.538(90) | 8 | 38.9 | 0.2198 | 0.2246 | 2.13 |
0.604(95) | 12 | 34.2 39.3 | 0.4271 0.2970 | 0.4048 0.3040 | 5.5 −2.3 |
Parameter | Value |
---|---|
Working fluid | R245fa |
Ambient temperature (K) | 293.15 |
Ambient pressure (kpa) | 101.325 |
Inlet temperature of geothermal water (K) | 423.15 |
Pressure of geothermal water (kpa) | 500 |
Mass flow rate of geothermal water (kg/s) | 20 |
Evaporating temperature of refrigeration (K) | 243.15 |
Isentropic efficiency of turbine/η | 0.75 |
Isentropic efficiency of pump/ηp | 0.75 |
Isentropic efficiency of compressor/ηc [3] | 0.75 |
Isentropic efficiency of compressor/ηn [3] | 0.9 |
Mixing efficiency of mix chamber/ηm | 0.85 |
Isentropic efficiency of diffuser/ηd | 0.9 |
Point | Fluid | T (K) | P (kpa) | m (kg/s) | h (kJ/kg) | s (kJ/kg.K) | E (kW) |
---|---|---|---|---|---|---|---|
1 | R245fa | 303.15 | 177.78 | 21.840 | 239.10 | 1.135 | 77.9 |
1′ | R245fa | 303.15 | 177.78 | 20.315 | 239.10 | 1.135 | 72.5 |
1″ | R245fa | 303.15 | 177.78 | 1.525 | 239.10 | 1.135 | 5.4 |
2 | R245fa | 303.67 | 889.32 | 20.315 | 240.00 | 1.137 | 83.6 |
3 | R245fa | 318.88 | 889.32 | 20.315 | 260.53 | 1.203 | 107.9 |
4 | R245fa | 357.99 | 889.32 | 20.315 | 313.31 | 1.409 | 314.4 |
5 | R245fa | 357.99 | 889.32 | 2.031 | 464.91 | 1.783 | 80.6 |
6 | R245fa | 357.99 | 889.32 | 18.284 | 316.47 | 1.368 | 233.8 |
7 | R245fa | 358.81 | 1656.5 | 18.284 | 317.57 | 1.369 | 247.4 |
8 | R245fa | 390.72 | 1656.5 | 18.284 | 488.35 | 1.816 | 976.2 |
9 | R245fa | 334.21 | 177.78 | 18.284 | 456.55 | 1.848 | 221.9 |
10 | R245fa | 370.34 | 889.32 | 0 | 479.79 | 1.824 | 0 |
11 | R245fa | 357.99 | 889.32 | 2.031 | 464.91 | 1.783 | 80.6 |
12 | R245fa | 243.15 | 10.85 | 1.525 | 239.10 | 1.170 | −9.9 |
13 | R245fa | 243.15 | 10.85 | 1.525 | 382.76 | 1.761 | −55 |
14 | R245fa | 308.47 | 114.82 | 1.525 | 433.70 | 1.803 | 3.8 |
15 | R245fa | 329.05 | 177.78 | 3.556 | 451.53 | 1.833 | 41.1 |
16 | R245fa | 333.37 | 177.78 | 21.84 | 455.73 | 1.846 | 262.9 |
17 | R245fa | 313.67 | 177.78 | 21.84 | 436.63 | 1.787 | 223.9 |
18 | water | 293.15 | 101.325 | 195.634 | 84.01 | 0.296 | 0 |
19 | water | 298.42 | 101.325 | 195.634 | 106.06 | 0.371 | 38.3 |
20 | air | 253.15 | 101.325 | 43.570 | 379.18 | 3.716 | 131.7 |
21 | air | 248.15 | 101.325 | 43.570 | 374.15 | 3.696 | 168.8 |
Parameter | Value |
---|---|
Tlpvg (K) | 357.99 |
Thpvg (K) | 385.72 |
Xlpvg,out | 0.1 |
rsuction | 0 |
rcompress | 10.58 |
0.7506 | |
Wnet (kW) | 465.36 |
Qc (kW) | 219.06 |
ηth (%) | 15.01 |
ηex (%) | 43.18 |
SUCP ($/MWh) | 45.525 |
SUEP (mpts/MWh) | 5122.6 |
Component | (kW) | (kW) | (kW) | ηe (%) | ELIP (kW) |
---|---|---|---|---|---|
Condenser | 146.0 | 38.4 | 107.6 | 26.30 | 79.30 |
Lppump | 18.2 | 11.2 | 7 | 61.54 | 2.69 |
IHE | 39.1 | 24.3 | 14.8 | 62.15 | 5.60 |
LPVG | 322.7 | 206.5 | 116.2 | 63.99 | 41.84 |
Separator | 31.44 | 31.44 | 0 | 100 | 0 |
Hppump | 20.2 | 13.6 | 6.6 | 67.33 | 2.16 |
HPVG | 860.3 | 728.9 | 131.4 | 84.73 | 20.06 |
Turibe | 754.3 | 581.5 | 172.8 | 77.09 | 39.59 |
THV | 66.3 | 51.0 | 15.3 | 76.92 | 3.53 |
Evaporator | 45 | 37.1 | 7.9 | 82.44 | 1.39 |
Compressor | 77.7 | 58.8 | 18.9 | 75.68 | 4.60 |
Ejector | 57.1 | 13.8 | 43.3 | 24.17 | 32.83 |
Component | cF (USD/MWh) | cp (USD/MWh) | (USD/h) | (USD/h) | r | f |
---|---|---|---|---|---|---|
Condenser | 23.4302 | 127.6784 | 1.4742 | 2.5211 | 4.4493 | 0.3689 |
Lppump | 37.3694 | 66.2622 | 0.0599 | 0.2616 | 0.7732 | 0.1858 |
IHE | 23.4302 | 47.4552 | 0.2361 | 0.3468 | 1.0254 | 0.4052 |
LPVG | 4.6800 | 9.1450 | 0.3780 | 0.5438 | 0.9541 | 0.4100 |
Separator | 17.4205 | 17.4205 | 0 | 0 | 0 | 0 |
Hppump | 37.3694 | 60.0417 | 0.0616 | 0.2466 | 0.6067 | 0.1994 |
HPVG | 4.6800 | 6.7493 | 0.8930 | 0.6150 | 0.4421 | 0.5921 |
Turibe | 10.0485 | 37.3694 | 14.1490 | 1.7364 | 2.7189 | 0.8907 |
THV | 23.4302 | 24.6272 | 0.0065 | 0.3585 | 0.0511 | 0.0178 |
Evaporator | 13.5240 | 24.7664 | 0.3109 | 0.1068 | 0.8313 | 0.7444 |
Compressor | 13.5240 | 55.6031 | 0.3667 | 0.2556 | 3.1114 | 0.5896 |
Ejector | 46.5427 | 95.6343 | 0 | 2.0153 | 1.0548 | 0 |
Component | bF (mpts/MWh) | bp (mpts/MWh) | (mpts/h) | (mpts/h) | rb | fb (%) |
---|---|---|---|---|---|---|
Condenser | 18,401 | 70,071 | 0.0498 | 1979.9476 | 2.8079 | 0.0025 |
Lppump | 22,342 | 36,411 | 0.0690 | 156.394 | 0.6289 | 0.044 |
IHE | 18,401 | 29,722 | 2.3663 | 272.3348 | 0.6152 | 0.86 |
LPVG | 14,577 | 22,809 | 5.6278 | 1693.8474 | 0.5648 | 0.33 |
Separator | 22,809 | 22,809 | 0 | 0 | 0 | 0 |
Hppump | 22,342 | 33,200 | 0.0765 | 147.4572 | 0.4860 | 0.0517 |
HPVG | 14,577 | 17,219 | 9.6843 | 1915.4178 | 0.1812 | 0.50 |
Turibe | 17,219 | 22,342 | 2.7084 | 2975.4432 | 0.2975 | 0.091 |
THV | 18,401 | 33,509 | 0 | 281.5353 | 0.8210 | 0 |
Evaporator | 10,105 | 12,252 | 0.0026 | 79.8295 | 0.2125 | 0.0033 |
Compressor | 22,342 | 29,519 | 0.3169 | 422.2638 | 0.3213 | 0.075 |
Ejector | 13,438 | 55,733 | 0 | 581.8654 | 3.1474 | 0 |
System Performance | New System | System in Literature [3] |
---|---|---|
Fluid | R245fa | R245fa |
Thpvg (K) | 383.15 | 383.15 |
Tlpvg (K) | 360.15 | 360.15 |
Tevap (K) | 275.15 | 275.15 |
XLPVG,OUT | 0.118 | 0.4 |
THS,OUT (K) | 365.36 | 351.71 |
Qin | 4910.2 | 6057.61 |
WT | 549.08 | 529.82 |
Wp | 38.21 | 46.91 |
Wc | 68.45 | - |
μ | 1.48 | 0.2925 |
Wnet | 499.47 | 486.95 |
Qc | 555.37 | 555.37 |
Hth,sys (%) | 21.48 | 17.21 |
ηex,sys (%) | 28.15 | 25.58 |
SUCP (USD/MWh) | 45.06 | 53.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, J.; Wang, H.; Wang, J.; Feng, C. Exergoeconomic and Exergoenvironmental Analysis of a Novel Power and Cooling Cogeneration System Based on Organic Rankine Cycle and Ejector Refrigeration Cycle. Energies 2022, 15, 7945. https://doi.org/10.3390/en15217945
Tao J, Wang H, Wang J, Feng C. Exergoeconomic and Exergoenvironmental Analysis of a Novel Power and Cooling Cogeneration System Based on Organic Rankine Cycle and Ejector Refrigeration Cycle. Energies. 2022; 15(21):7945. https://doi.org/10.3390/en15217945
Chicago/Turabian StyleTao, Jinke, Huitao Wang, Jianjun Wang, and Chaojun Feng. 2022. "Exergoeconomic and Exergoenvironmental Analysis of a Novel Power and Cooling Cogeneration System Based on Organic Rankine Cycle and Ejector Refrigeration Cycle" Energies 15, no. 21: 7945. https://doi.org/10.3390/en15217945
APA StyleTao, J., Wang, H., Wang, J., & Feng, C. (2022). Exergoeconomic and Exergoenvironmental Analysis of a Novel Power and Cooling Cogeneration System Based on Organic Rankine Cycle and Ejector Refrigeration Cycle. Energies, 15(21), 7945. https://doi.org/10.3390/en15217945