IoT-Based Decentralized Energy Systems
Abstract
:1. Introduction
2. Internet of Things in the Energy Sector
- Scalability,
- Heterogeneity,
- Energy efficiency,
- Dynamic nature,
- The detection of cyber-attacks [3].
3. Research Method
- Scopus database ( TITLE-ABS-KEY ( blockchain ) AND TITLE-ABS-KEY ( iot ) AND TITLE-ABS-KEY ( smart AND grid ) AND TITLE-ABS-KEY ( energy ) ) AND ( LIMIT-TO ( PUBSTAGE , “final” ) ) AND ( LIMIT-TO ( LANGUAGE , “English” ) );
- Web of Science Blockchain and IoT and Smart Grids and Energy (All fields).
Data Analysis
4. Smart Energy Grid System
4.1. Local Area Network (LAN)
4.2. Wide Area Network (WAN)
4.3. IoT Computing in Smart Grid (SG) Systems
4.4. SCADA System for Energy Grids
4.5. Standardization
5. Smart Grid Concept
6. Challenges of Smart Grids
Cyber-Threat Counter Measures
- Limited physical access to the IoT devices,
- Physical access to the devices monitored,
- Avoiding direct connecting IoT devices to the Internet,
- Proxy-based access system implementation,
- Secure remote access mechanism,
- Side-channel protection,
- Firmware protection,
- Secure operating system,
- Network security protocol-supported mechanism,
- Periodical security testing,
- Implementation of crypto mechanism [3].
7. Internet of Energy (IoE) Concept
- The shift from traditional to renewable energy sources (RESs) as main energy production sources,
- The transformation of building into smart buildings by means of the Internet of Things (IoT) with the ability to sell excess energy to the grid,
- The deployment of storage technologies for better flexibility and efficient energy distribution within the grid,
- The transformation from a centralized system to a decentralized one based on the existing infrastructure,
- The electrification of the transport system in order to become independent from liquid fuels (e.g., oil and gasoline).
8. Blockchain in IoE
- Proof of Work (PoW),
- Proof of Stake (PoS),
- Proof of Authority (PoA),
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AMI | Advanced Metering Infrastructure |
BC | Blockchain |
BDA | Big Data Analytics |
BIPV | Building-Integrated Photovoltaics |
CAGR | Compound Annual Growth Rate |
CSV | Comma-Separated Values |
DARPA | Defense Advanced Research Projects Agency |
DC | Direct Current |
DLT | Distributed ledger |
ECC | Elliptic Curve Cryptography |
EEA | Enterprise Ethereum Alliance |
EV | Electric Vehicle |
HAN | Home Area Network |
HMI | Human Machine Interfaces |
HVDC | High-Voltage Direct Current |
IDS | Intrusion Detection system |
IEEE | Institute of Electrical and Electronics Engineers |
IoE | Internet of Energy |
IoT | Internet of Things |
ISO | International Organization for Standardization |
ITU-T | The International Telecommunication Union’s Standardization Sector |
LAN | Local Area Network |
LE | Low Energy |
LoRa | Long Range |
LPWAN | Low-Power Wide Area Network |
LTE | Long-Term Evolution |
MG | Microgrid |
ML | Machine Learning |
NAN | Neighbor Area Network |
NB-IoT | Narrow-Band Internet of Things |
NFC | Near-Field Communication |
OSC | Organic Solar Cell |
P2P | Peer-to-Peer |
PBFT | Practical Byzantine Fault Tolerance |
PCE | Power Conversion Efficiency |
PII | Personally Identifiable Information |
PoA | Proof of Authority |
PoS | Proof of Stake |
PoW | Proof of Work |
PUF | Physically Unclonable Function |
PVs | Photovoltaic panels |
RES | Renewable Energy Sources |
RFID | Radio-Frequency Identification |
RTU | Remote Terminal Unit |
SCADA | Supervisory Control and Data Acquisition |
SG | Smart Grid |
SM | Smart Metering |
TADIM | Trust Anchors for DLT-based Identity Management |
TES | Transactive Energy Systems |
UPnP | Universal Plug and Play |
V2G | Vehicle-to-Grid |
W3C | World Wide Web Consortium |
WAN | Wide Area Network |
Wi-Fi | Wireless Fidelity |
WPAN | Wireless Personal Area Network |
WSN | Wireless Sensor Network |
References
- Ferrag, M.A.; Maglaras, L. DeepCoin: A Novel Deep learning and Blockchain-based Energy Exchange Framework for Smart Grids. IEEE Trans. Eng. Manag. 2020, 67, 1285–1297. [Google Scholar] [CrossRef] [Green Version]
- Fadhel, N.; Lombardi, F.; Aniello, L.; Margheri, A.; Sassone, V. Towards a semantic modelling for threat analysis of IoT applications: A case study on transactive energy. In IET Conference Publications; Institution of Engineering and Technology: London, UK, 2019. [Google Scholar] [CrossRef]
- Abir, S.M.A.A.; Anwar, A.; Choi, J.; Kayes, A.S.M. Iot-enabled smart energy grid: Applications and challenges. IEEE Access 2021, 9, 50961–50981. [Google Scholar] [CrossRef]
- Raja Guru, R.; Kumar, P. Self-restrained energy grid with data analysis and blockchain techniques. In Energy Sources, Part A: Recovery, Utilization, and Environmental Effects; Taylor & Francis Group: Abingdon, UK, 2020; pp. 1–19. [Google Scholar] [CrossRef]
- Hasan, M.K.; Alkhalifah, A.; Islam, S.; Babiker, N.B.M.; Habib, A.K.M.A.; Aman, A.H.M.; Hossain, M. Blockchain Technology on Smart Grid, Energy Trading, and Big Data: Security Issues, Challenges, and Recommendations. Wirel. Commun. Mob. Comput. 2022, 2022, 1–26. [Google Scholar] [CrossRef]
- Al-Abri, T.; Onen, A.; Al-Abri, R.; Hossen, A.; Al-Hinai, A.; Jung, J.; Ustun, T.S. Review on Energy Application Using Blockchain Technology with an Introductions in the Pricing Infrastructure. IEEE Access 2022, 10, 80119–80137. [Google Scholar] [CrossRef]
- Baig, M.J.A.; Iqbal, M.T.; Jamil, M.; Khan, J. Peer-to-Peer Energy Trading in a Micro-grid Using Internet of Things and Blockchain. Electronics 2021, 25, 39–49. [Google Scholar] [CrossRef]
- Guan, Z.; Lu, X.; Yang, W.; Wu, L.; Wang, N.; Zhang, Z. Achieving efficient and Privacy-preserving energy trading based on blockchain and ABE in smart grid. J. Parallel Distrib. Comput. 2021, 147, 34–45. [Google Scholar] [CrossRef]
- Hosseinian, H.; Shahinzadeh, H.; Gharehpetian, G.B.; Azani, Z.; Shaneh, M. Blockchain outlook for deployment of IoT in distribution networks and smart homes. Int. J. Electr. Comput. Eng. 2020, 10, 2787–2796. [Google Scholar] [CrossRef]
- Khan, A.N.; Iqbal, N.; Ahmad, R.; Kim, D.H. Ensemble prediction approach based on learning to statistical model for efficient building energy consumption management. Symmetry 2021, 13, 405. [Google Scholar] [CrossRef]
- Alshaikhli, M.; Elfouly, T.; Elharrouss, O.; Mohamed, A.; Ottakath, N. Evolution of Internet of Things from Blockchain to IOTA: A Survey. IEEE Access 2022, 10, 844–866. [Google Scholar] [CrossRef]
- Eze, K.G.; Akujuobi, C.M.; Hunter, S.; Alam, S.; Musa, S.; Foreman, J. A Blockchain-based Security Architecture for the Internet of Things. WSEAS Trans. Inf. Sci. Appl. 2022, 19, 12–22. [Google Scholar] [CrossRef]
- Baidya, S.; Potdar, V.; Pratim Ray, P.; Nandi, C. Reviewing the opportunities, challenges, and future directions for the digitalization of energy. Energy Res. Soc. Sci. 2021, 81, 102243. [Google Scholar] [CrossRef]
- Asif, R.; Ghanem, K.; Irvine, J. Proof-of-puf enabled blockchain: Concurrent data and device security for internet-of-energy. Sensors 2021, 21, 28. [Google Scholar] [CrossRef] [PubMed]
- Bregar, A. Implementation of a multi-agent multi-criteria negotiation protocol for self-sustainable smart grids. J. Decis. Syst. 2020, 29 (Suppl. S1), 87–97. [Google Scholar] [CrossRef]
- Çelik, D.; Meral, M.E.; Waseem, M. Investigation and analysis of effective approaches, opportunities, bottlenecks and future potential capabilities for digitalization of energy systems and sustainable development goals. Electr. Power Syst. Res. 2022, 211, 108251. [Google Scholar] [CrossRef]
- Stanelyte, D.; Radziukyniene, N.; Radziukynas, V. Overview of Demand-Response Services: A Review. Energies 2022, 15, 1659. [Google Scholar] [CrossRef]
- Juszczyk, O.; Shahzad, K. Blockchain Technology for Renewable Energy: Principles, Applications and Prospects. Energies 2022, 15, 4603. [Google Scholar] [CrossRef]
- Rejeb, A.; Keogh, J.G.; Treiblmaier, H. Leveraging the Internet of Things and blockchain technology in Supply Chain Management. Future Internet 2019, 11, 161. [Google Scholar] [CrossRef] [Green Version]
- Alexopoulos, K.; Koukas, S.; Boli, N.; Mourtzis, D. Architecture and development of an Industrial Internet of Things framework for realizing services in Industrial Product Service Systems. Procedia CIRP 2018, 72, 880–885. [Google Scholar] [CrossRef]
- Forsstrom, S.; Butun, I.; Eldefrawy, M.; Jennehag, U.; Gidlund, M. Challenges of Securing the Industrial Internet of Things Value Chain. In Proceedings of the 2018 Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2018—Proceedings, Brescia, Italy, 16–18 April 2018; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2018; pp. 218–223. [Google Scholar] [CrossRef] [Green Version]
- Ometov, A.; Molua, O.L.; Komarov, M.; Nurmi, J. A Survey of Security in Cloud, Edge, and Fog Computing. Sensors 2022, 22, 927. [Google Scholar] [CrossRef]
- Aggarwal, S.; Kumar, N.; Tanwar, S.; Alazab, M. A Survey on Energy Trading in the Smart Grid: Taxonomy, Research Challenges and Solutions. IEEE Access 2021, 9, 116231–116253. [Google Scholar] [CrossRef]
- Motlagh, N.H.; Mohammadrezaei, M.; Hunt, J.; Zakeri, B. Internet of things (IoT) and the energy sector. Energies 2020, 13, 494. [Google Scholar] [CrossRef] [Green Version]
- Hosseinnezhad, V.; Hayes, B.; O’Regan, B.; Siano, P. Practical Insights to Design a Blockchain-Based Energy Trading Platform. IEEE Access 2021, 9, 154827–154844. [Google Scholar] [CrossRef]
- Jaiswal, R.; Davidrajuh, R.; Rong, C. Fog computing for realizing smart neighborhoods in smart grids. Computers 2020, 9, 76. [Google Scholar] [CrossRef]
- Kumari, A.; Gupta, R.; Tanwar, S.; Kumar, N. Blockchain and AI amalgamation for energy cloud management: Challenges, solutions, and future directions. J. Parallel Distrib. Comput. 2020, 143, 148–166. [Google Scholar] [CrossRef]
- Olivares-Rojas, J.C.; Reyes-Archundia, E.; Gutierrez-Gnecchi, J.A.; Molina-Moreno, I.; Cerda-Jacobo, J.; Mendez-Patino, A. A transactive energy model for smart metering systems using blockchain. CSEE J. Power Energy Syst. 2021, 7, 943–953. [Google Scholar] [CrossRef]
- Khan, A.N.; Iqbal, N.; Rizwan, A.; Ahmad, R.; Kim, D.H. An ensemble energy consumption forecasting model based on spatial-temporal clustering analysis in residential buildings. Energies 2021, 14, 3020. [Google Scholar] [CrossRef]
- Suciu, G.; Farao, A.; Bernardinetti, G.; Palamà, I.; Sachian, M.A.; Vulpe, A.; Vochin, M.-C.; Muresan, P.; Bampatsikos, M.; Muñoz, A.; et al. SAMGRID: Security Authorization and Monitoring Module Based on SealedGRID Platform. Sensors 2022, 22, 6527. [Google Scholar] [CrossRef]
- Wójcicki, K.; Biegańska, M.; Paliwoda, B.; Górna, J. Internet of Things in Industry: Research Profiling, Application, Challenges and Opportunities—A Review. Energies 2022, 15, 1806. [Google Scholar] [CrossRef]
- Corallo, A.; Latino, M.E.; Menegoli, M.; Pontrandolfo, P. A systematic literature review to explore traceability and lifecycle relationship. Int. J. Prod. Res. 2020, 58, 4789–4807. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Wu, D.; Xie, Y.; Li, J. Mapping the Research Trends by Co-word Analysis Based on Keywords from Funded Project. Procedia Comput. Sci. 2016, 91, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Jamil, F.; Iqbal, N.; Imran Ahmad, S.; Kim, D. Peer-to-Peer Energy Trading Mechanism Based on Blockchain and Machine Learning for Sustainable Electrical Power Supply in Smart Grid. IEEE Access 2021, 9, 39193–39217. [Google Scholar] [CrossRef]
- Kumar, N.M.; Chand, A.A.; Malvoni, M.; Prasad, K.A.; Mamun, K.A.; Islam, F.R.; Chopra, S.S. Distributed energy resources and the application of ai, iot, and blockchain in smart grids. Energies 2020, 13, 5739. [Google Scholar] [CrossRef]
- Laszka, A.; Dubey, A.; Walker, M.; Schmidt, D. Providing privacy, safety, and security in IoT-based transactive energy systems using distributed ledgers. In ACM International Conference Proceeding Series; Association for Computing Machinery: New York, NY, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xu, K.; He, M. Development status and some considerations on Energy Internet construction in Beijing-Tianjin-Hebei region. Heliyon 2022, 8, e08722. [Google Scholar] [CrossRef] [PubMed]
- Bracciale, L.; Loreti, P.; Raso, E.; Bianchi, G.; Gallo, P.; Sanseverino, E.R. A Privacy-Preserving Blockchain Solution to Support Demand Response in Energy Trading. In Proceedings of the MELECON 2022—IEEE Mediterranean Electrotechnical Conference, Palermo, Italy, 14–16 June 2022; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2022; pp. 677–682. [Google Scholar] [CrossRef]
- Lu, W.; Ren, Z.; Xu, J.; Chen, S. Edge Blockchain Assisted Lightweight Privacy-Preserving Data Aggregation for Smart Grid. IEEE Trans. Netw. Serv. Manag. 2021, 18, 1246–1259. [Google Scholar] [CrossRef]
- Pieroni, A.; Scarpato, N.; di Nunzio, L.; Fallucchi, F.; Raso, M. Smarter City: Smart energy grid based on Blockchain technology. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 298–306. [Google Scholar] [CrossRef]
- Wang, D.; Wang, H.; Fu, Y. Blockchain-based IoT device identification and management in 5G smart grid. Eurasip J. Wirel. Commun. Netw. 2021, 2021, 1–19. [Google Scholar] [CrossRef]
- Dehalwar, V.; Kolhe, M.L.; Deoli, S.; Jhariya, M.K. Blockchain-based trust management and authentication of devices in smart grid. Clean. Eng. Technol. 2022, 8, 100481. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Guerrero, J.M.; Vasquez, J.C. Decentralized transactive energy community in edge grid with positive buildings and interactive electric vehicles. Int. J. Electr. Power Energy Syst. 2022, 135, 107510. [Google Scholar] [CrossRef]
- Minh, Q.N.; Nguyen, V.H.; Quy, V.K.; Ngoc, L.A.; Chehri, A.; Jeon, G. Edge Computing for IoT-Enabled Smart Grid: The Future of Energy. Energies 2022, 15, 6140. [Google Scholar] [CrossRef]
- Singh, R.; Akram, S.V.; Gehlot, A.; Buddhi, D.; Priyadarshi, N.; Twala, B. Energy System 4.0: Digitalization of the Energy Sector with Inclination towards Sustainability. Sensors 2022, 22, 6619. [Google Scholar] [CrossRef] [PubMed]
- González, I.; Calderón, A.J.; Folgado, F.J. IoT real time system for monitoring lithium-ion battery long-term operation in microgrids. J. Energy Storage 2022, 51, 104596. [Google Scholar] [CrossRef]
- Gomes De Melo, G.C.; Torres, I.C.; Bezzera Queiroz De Araújo, Í.; Brito, D.B.; de Andrade Barboza, E. A Low-Cost IoT System for Real-Time Monitoring of Climatic Variables and Photovoltaic Generation for Smart Grid Application A Low-Cost IoT System for Real-Time Monitoring of Climatic Variables and Photovoltaic Generation for Smart. Sensors 2021, 21, 3293. [Google Scholar] [CrossRef]
- Shahzad, Y.; Javed, H.; Farman, H.; Ahmad, J.; Jan, B.; Zubair, M. Internet of Energy: Opportunities, applications, architectures and challenges in smart industries. Comput. Electr. Eng. 2020, 86, 106739. [Google Scholar] [CrossRef]
- Zhang, J. Distributed network security framework of energy internet based on internet of things. Sustain. Energy Technol. Assess. 2021, 44, 101051. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Guerrero, J.M.; Vasquez, J.C. A comprehensive overview of framework for developing sustainable energy internet: From things-based energy network to services-based management system. Renew. Sustain. Energy Rev. 2021, 150, 111409. [Google Scholar] [CrossRef]
- Shahinzadeh, H.; Mirhedayati, A.S.; Shaneh, M.; Nafisi, H.; Gharehpetian, G.B.; Moradi, J. Role of joint 5G-IoT framework for smart grid interoperability enhancement. In Proceedings of the 2020 15th International Conference on Protection and Automation of Power Systems, IPAPS 2020, Shiraz University, Shiraz, Iran, 30–31 December 2020; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2020; pp. 12–18. [Google Scholar] [CrossRef]
- Moradi, J.; Shahinzadeh, H.; Nafisi, H.; Marzband, M.; Gharehpetian, G.B. Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems. In Proceedings of the 2020 14th International Conference on Protection and Automation of Power Systems, IPAPS 2020, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran, 31 December 2019–1 January 2020; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 83–92. [Google Scholar] [CrossRef]
- de Arquer Fernández, P.; Angel Fernández Fernández, M.; Luis, J.; Candás, C.; Arboleya Arboleya, P. An IoT open source platform for photovoltaic plants supervision. Electr. Power Energy Syst. 2021, 125, 106540. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Cimen, H.; Vasquez, J.C.; Guerrero, J.M. Towards collective energy Community: Potential roles of microgrid and blockchain to go beyond P2P energy trading. Appl. Energy 2022, 314, 119003. [Google Scholar] [CrossRef]
- Mogadem, M.M.; Li, Y.; Meheretie, D.L. A survey on internet of energy security: Related fields, challenges, threats and emerging technologies. Clust. Comput. 2022, 25, 2449–2485. [Google Scholar] [CrossRef]
- Parvin, K.; Hannan, M.A.; Hui Mun, L.; Hossain Lipu, M.S.; Abdolrasol, M.G.M.; Jern Ker, P.; Muttaqi, K.M.; Dong, Z. The future energy internet for utility energy service and demand-side management in smart grid: Current practices, challenges and future directions. Sustain. Energy Technol. Assess. 2022, 53, 102648. [Google Scholar] [CrossRef]
- Prasanna Rani, D.D.; Suresh, D.; Rao Kapula, P.; Mohammad Akram, C.H.; Hemalatha, N.; Kumar Soni, P. IoT based smart solar energy monitoring systems. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Priyadharsini, K.; Dinesh Kumar, J.R.; Ganesh Babu, C.; Srikanth, A.; Sounddar, V.; Senthamilselvan, M. Elegant method to improve the efficiency of remotely located solar panels using IoT. In Materials Today: Proceedings; Elsevier Ltd.: Singapore, 2021; pp. 8094–8104. [Google Scholar] [CrossRef]
- Ma, R.; Yan, C.; Fong, P.W.K.; Yu, J.; Liu, H.; Yin, J.; Huang, J.; Lu, X.; Yan, H.; Li, G. In situ and ex situ investigations on ternary strategy and co-solvent effects towards high-efficiency organic solar cells. Energy Environ. Sci. 2022, 15, 2479–2488. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Zhou, G.; Gu, E.; Xia, R.; Yan, B.; Yao, J.; Zhu, H.; Lu, X.; Yip, H.-L.; et al. High-performance see-through power windows. Energy Environ. Sci. 2022, 15, 2629–2637. [Google Scholar] [CrossRef]
- Long, H.; Fu, X.; Kong, W.; Chen, H.; Zhou, Y.; Yang, F. Key technologies and applications of rural energy internet in China. Inf. Process. Agric. 2022. [Google Scholar] [CrossRef]
- Xu, W.; Li, J.; Dehghani, M.; GhasemiGarpachi, M. Blockchain-based secure energy policy and management of renewable-based smart microgrids. Sustain. Cities Soc. 2021, 72, 103010. [Google Scholar] [CrossRef]
- Geng, J.; Du, W.; Yang, D.; Chen, Y.; Liu, G.; Fu, J.; He, G.; Wang, J.; Chen, H. Construction of energy internet technology architecture based on general system structure theory. Energy Rep. 2021, 7, 10–17. [Google Scholar] [CrossRef]
- Hu, H.; Ou, J.; Qian, B.; Luo, Y.; He, P.; Zhou, M.; Chen, Z. A Practical Anonymous Voting Scheme Based on Blockchain for Internet of Energy. Secur. Commun. Netw. 2022, 2022, 1–15. [Google Scholar] [CrossRef]
- Perera, A.T.D.; Wang, Z.; Nik, V.M.; Scartezzini, J.L. Towards realization of an Energy Internet: Designing distributed energy systems using game-theoretic approach. Appl. Energy 2021, 283, 116349. [Google Scholar] [CrossRef]
- Swathi, G.C.; Kumar, G.K.; Kumar, A.P.S. Estimating Botnet Impact on IoT/IoE networks using Traffic flow Features. Comput. Electr. Eng. 2022, 102, 108209. [Google Scholar] [CrossRef]
- Kong, X.; Zhao, X.; Wang, C.; Duan, Q.; Sha, G.; Liu, L. Promote the international development of Energy Internet technology standards based on key competition mode. Sustain. Cities Soc. 2022, 86, 104151. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, Y.; Shen, M. Application and prospect of supercapacitors in Internet of Energy (IOE). J. Energy Storage 2021, 44, 103299. [Google Scholar] [CrossRef]
- Song, Y.J.; Lee, J.K. A blockchain-based fog-enabled energy cloud in internet of things. J. Logist. Inform. Serv. Sci. 2020, 7, 45–64. [Google Scholar] [CrossRef]
- Song, Y.J.; Lee, J.K. A blockchain and internet of things based architecture design for energy transaction. J. Syst. Manag. Sci. 2020, 10, 122–140. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Guerrero, J.M.; Vasquez, J.C. Digitalization and decentralization driving transactive energy Internet: Key technologies and infrastructures. Int. J. Electr. Power Energy Syst. 2021, 126, 106593. [Google Scholar] [CrossRef]
- Laroussi, I.; Huan, L.; Xiusheng, Z. How will the internet of energy (IoE) revolutionize the electricity sector? A techno-economic review. Mater. Today Proc. 2022. [Google Scholar] [CrossRef]
- Zhihong, J.; Jian, H.; Wenzhou, L.; Zhe, C.; Ning, L.; Siyuan, W.; Xiao, Z.; Chang, L. Energy internet—A new driving force for sustainable urban development. In Energy Procedia; Elsevier Ltd.: Singapore, 2018; pp. 1206–1211. [Google Scholar] [CrossRef]
- Khorasany, M.; Dorri, A.; Razzaghi, R.; Jurdak, R. Lightweight Blockchain Framework for Location-aware Peer-to-Peer Energy Trading. Int. J. Electr. Power Energy Syst. 2020, 127, 106610. [Google Scholar] [CrossRef]
- Merrad, Y.; Habaebi, M.H.; Toha, F.; Islam, M.R.; Gunawan, T.S.; Mesri, M. Fully Decentralized, Cost-Effective Energy Demand Response Management System with a Smart Contracts-Based Optimal Power Flow Solution for Smart Grids. Energies 2022, 15, 4461. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Yassine, A.; Benlamri, R. Blockchain-based Mechanisms for Local Energy Trading in Smart Grids. In Proceedings of the HONET-ICT 2019—IEEE 16th International Conference on Smart Cities: Improving Quality of Life using ICT, IoT and AI, Charlotte, NC, USA, 6–9 October 2019; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 110–114. [Google Scholar] [CrossRef]
- Dietrich, F.; Ge, Y.; Turgut, A.; Louw, L.; Palm, D. Review and analysis of blockchain projects in supply chain management. Procedia Comput. Sci. 2021, 180, 724–733. [Google Scholar] [CrossRef]
- Esmaeilian, B.; Sarkis, J.; Lewis, K.; Behdad, S. Blockchain for the future of sustainable supply chain management in Industry 4.0. Resour. Conserv. Recycl. 2020, 163, 105064. [Google Scholar] [CrossRef]
- Kapassa, E.; Themistocleous, M.; Christodoulou, K.; Iosif, E. Blockchain application in internet of vehicles: Challenges, contributions and current limitations. Future Internet 2021, 13, 313. [Google Scholar] [CrossRef]
- Merrad, Y.; Habaebi, M.H.; Islam, M.R.; Gunawan, T.S.; Mesri, M. Robust Decentralized Proof of Location for Blockchain Energy Applications Using Game Theory and Random Selection. Sustainability 2022, 14, 6123. [Google Scholar] [CrossRef]
- Gür, A.Ö.; Öksüzer, Ş.; Karaarslan, E. Blockchain Based Metering and Billing System Proposal with Privacy Protection for the Electric Network. In Proceedings of the 7th International Istanbul Smart Grids and Cities Congress and Fair, ICSG 2019—Proceedings, Istanbul, Turkey, 25–26 April 2019; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 204–208. [Google Scholar] [CrossRef]
- Kolahan, A.; Maadi, S.R.; Teymouri, Z.; Schenone, C. Blockchain-based solution for energy demand-side management of residential buildings. Sustain. Cities Soc. 2021, 75, 103316. [Google Scholar] [CrossRef]
- Lombardi, F.; Aniello, L.; de Angelis, S.; Margheri, A.; Sassone, V. A blockchain-based infrastructure for reliable and cost-effective IoT-aided smart grids. In Proceedings of the IET Conference Publications, London, UK, 28–29 March 2018; Institution of Engineering and Technology: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Luong, N.C.; Xiong, Z.; Wang, P.; Niyato, D. Optimal Auction For Edge Computing Resource Management in Mobile Blockchain Networks: A Deep Learning Approach. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar]
- Wang, S.; Liu, X.; Ha, J. Optimal IoT-based decision-making of smart grid dispatchable generation units using blockchain technology considering high uncertainty of system. Ad Hoc Netw. 2022, 127, 102751. [Google Scholar] [CrossRef]
- Hasankhani, A.; Mehdi Hakimi, S.; Shafie-khah, M.; Asadolahi, H. Blockchain technology in the future smart grids: A comprehensive review and frameworks. Int. J. Electr. Power Energy Syst. 2021, 129, 106811. [Google Scholar] [CrossRef]
- Florea, B.C.; Taralunga, D.D. Blockchain IoT for smart electric vehicles battery management. Sustainability 2020, 12, 3984. [Google Scholar] [CrossRef]
- Chaudhary, R.; Jindal, A.; Aujla, G.S.; Aggarwal, S.; Kumar, N.; Choo, K.K.R. BEST: Blockchain-based secure energy trading in SDN-enabled intelligent transportation system. Comput. Secur. 2019, 85, 288–299. [Google Scholar] [CrossRef]
- Sisi, Z.; Souri, A. Blockchain technology for energy-aware mobile crowd sensing approaches in Internet of Things. Trans. Emerg. Telecommun. Technol. 2021, e4217. [Google Scholar] [CrossRef]
- Musleh, A.S.; Yao, G.; Muyeen, S.M. Blockchain Applications in Smart Grid-Review and Frameworks. IEEE Access 2019, 7, 86746–86757. [Google Scholar] [CrossRef]
- Valtanen, K.; Backman, J.; Yrjola, S. Blockchain-Powered Value Creation in the 5G and Smart Grid Use Cases. IEEE Access 2019, 7, 25690–25707. [Google Scholar] [CrossRef]
- Mylrea, M.; Gourisetti, S.N.G. Blockchain for Supply Chain Cybersecurity, Optimization and Compliance. In Proceedings of the Resilience Week 2018, RWS 2018, Denver, CO, USA, 20–23 August 2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2018; pp. 70–76. [Google Scholar] [CrossRef]
- Nour, M.; Chaves-Avila, J.P.; Sanchez-Miralles, A. Review of Blockchain Potential Applications in the Electricity Sector and Challenges for Large Scale Adoption. IEEE Access 2022, 10, 47384–47418. [Google Scholar] [CrossRef]
- Mengelkamp, E.; Notheisen, B.; Beer, C.; Dauer, D.; Weinhardt, C. A blockchain-based smart grid: Towards sustainable local energy markets. In Computer Science—Research and Development; Springer: Berlin, Germany, 2018; pp. 207–214. [Google Scholar] [CrossRef]
- Meeuw, A.; Schopfer, S.; Wörner, A.; Tiefenbeck, V.; Ableitner, L.; Fleisch, E.; Wortmann, F. Implementing a blockchain-based local energy market: Insights on communication and scalability. Comput. Commun. 2020, 160, 158–171. [Google Scholar] [CrossRef]
- Laszka, A.; Eisele, S.; Dubey, A.; Karsai, G.; Kvaternik, K. TRANSAX: A Blockchain-based Decentralized Forward-Trading Energy Exchange for Transactive Microgrids. In Proceedings of the 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS), Singapore, 11–13 December 2018. [Google Scholar]
- Lauer, M.; Jaddivada, R.; Ilic, M. Secure blockchain-enabled DyMonDS design. In ACM International Conference Proceeding Series; Association for Computing Machinery: New York, NY, USA, 2019; pp. 191–198. [Google Scholar] [CrossRef]
- Munoz, M.F.; Zhang, K.; Amara, F. ZipZap: A Blockchain Solution for Local Energy Trading. In Proceedings of the 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Shanghai, China, 2–5 May 2022; Available online: http://arxiv.org/abs/2202.13450 (accessed on 22 September 2022).
- Shukla, S.; Thakur, S.; Breslin, J.G. Secure communication in smart meters using elliptic curve cryptography and digital signature algorithm. In Proceedings of the 2021 IEEE International Conference on Cyber Security and Resilience, CSR 2021, Virtual. 26–28 July 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; pp. 261–266. [Google Scholar] [CrossRef]
- Lüth, A.; Zepter, J.M.; Crespo del Granado, P.; Egging, R. Local electricity market designs for peer-to-peer trading: The role of battery flexibility. Appl. Energy 2018, 229, 1233–1243. [Google Scholar] [CrossRef]
Cluster | Cluster Color | Number of Keywords | Cluster Keywords |
---|---|---|---|
1 | Red | 10 | artificial intelligence blockchain cybersecurity electric power transmission networks information management internet of things internet of things (iot) iot smart grid smart power grids |
2 | Green | 7 | energy efficiency energy trading energy utilization intelligent buildings peer to peer networks power markets smart city |
3 | Blue | 6 | block-chain distributed ledger energy renewable energies renewable energy resources smart contract |
4 | Yellow | 5 | data privacy energy resources network security smart contracts |
Standard | Document Status | Scope |
---|---|---|
ISO/CD TR 6039 | Under development | Blockchain and distributed ledger technologies—identifiers of subjects and objects for the design of blockchain systems. |
ISO 22739:2020 | Published | Provides fundamental terminology for blockchain and distributed ledger technologies. |
ISO/CD 22739 | Under development (2nd edition) | Blockchain and distributed ledger technologies—vocabulary. |
ISO/TR 23244:2020 | Published | Provides an overview of privacy and personally identifiable information (PII) protection as applied to blockchain and distributed ledger technologies (DLT) systems |
ISO/TR 23249:2022 | Published | Provides an overview of existing DLT systems for identity management, i.e., the mechanisms by which one or more entities can create, receive, modify, use and revoke a set of identity attributes. |
ISO 23257:2022 | Published | Specifies a reference architecture for distributed ledger technology (DLT) systems including blockchain systems. The reference architecture addresses concepts, cross-cutting aspects, architectural considerations, and architecture views, including functional components, roles, activities, and their relationships for blockchain and DLT. |
ISO/TS 23258:2021 | Published | Specifies a taxonomy and an ontology for blockchain and distributed ledger technologies (DLT). The taxonomy includes a taxonomy of concepts, a taxonomy of DLT systems and a taxonomy of application domains, purposes and economic activity sections for use cases. The ontology includes classes and attributes as well as relations between concepts. |
ISO/TR 23455:2019 | Published | Provides an overview of smart contracts in BC/DLT systems; describing what smart contracts are and how they work. It also discusses the methods of interaction between multiple smart contracts. This document focuses on the technical aspects of smart contracts. Smart contracts for legally binding use and applications will only be briefly mentioned in this document. |
ISO/TR 23576:2020 | Published | Discusses the threats, risks, and controls related to systems and asset information. |
ISO/TS 23635:2022 | Published | Provides guiding principles and a framework for the governance of DLT systems. |
ISO/CD TR 23644 | Under development | Blockchain and distributed ledger technologies—an overview of trust anchors for DLT-based identity management (TADIM). |
ISO/CD TR 24374 | Under development | Information technology—security techniques—DLT and blockchain for financial services. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biegańska, M. IoT-Based Decentralized Energy Systems. Energies 2022, 15, 7830. https://doi.org/10.3390/en15217830
Biegańska M. IoT-Based Decentralized Energy Systems. Energies. 2022; 15(21):7830. https://doi.org/10.3390/en15217830
Chicago/Turabian StyleBiegańska, Marta. 2022. "IoT-Based Decentralized Energy Systems" Energies 15, no. 21: 7830. https://doi.org/10.3390/en15217830