A Current Sensorless Control of Buck-Boost Converter for Maximum Power Point Tracking in Photovoltaic Applications
Abstract
1. Introduction
2. The PV System under Study
3. The Proposed Current Sensorless MPPT Algorithm
3.1. Establishment of the Objective Function from the Mathematical Model of the Buck-Boost Converter
3.2. Stability Requirement Analysis of Q Using Lyapunov’s Second Method
3.3. Description of the Proposed CSL-MPPT
- Step ①: Initialization of the duty cycle D based on (3).
- Step ②: Sensing VPV and calculation of ∆V and ∆D.
- Step ③: Calculation of Q using (13).
- Step ④: Decision of the direction of perturbation of D.
- Step ⑤: Storage of the actual values of the D and VPV.
- Step ⑥: Transmitting the updated D to the converter.
- The initialization of D and the step-size of the duty cycle perturbation (DS) are made in the first state labeled ①.
- VPV sensed after TS = 20 ms and ΔV, ΔD, denoted by DV, DD, respectively, can be calculated during state ② activation.
- In state ③, ΔV, and ΔD values are used to calculate Q.
- The decision of the perturbation direction of D is made by executing either Increases_Duty_Cycle or Decreases_Duty_Cycle states ④, depending on the sign of Q.
- In state ⑤, the actual values of VPV and D are stored for the next MPPT cycle.
- The updated D is transmitted to the converter in state ⑥.
4. Simulation of the Proposed CSL-MPPT Method
4.1. The Test Environment Used for Simulation
4.2. Results and Discussion
5. Hardware Validation
5.1. Experimental Set-Up
- Multiplexing the parallel input/output of port C (PIOC) with PWM channel 6 output: The register REG_PIOC_PDR is used to disable PIOC; then, the REG_PIOC_ABSR register is used to assign the PIOC to peripheral A or B; after that, the PIOC is enabled again by using REG_PIOC_OER.
- Switching the frequency configuration: the channel mode register REG_PWM_CMR6 is used to set the required clock of channel 6 and the characteristics of the output waveforms. Then, the value of REG_PWM_CPRD6 is calculated such that the required frequency can be accurately generated, i.e., to get a 20 kHz-switching frequency, since the master clock (84 MHz) is selected, the value of REG_PWM_CPRD6 is obtained as follows: 84 MHz/20 KHz = 4200.
- Updating the duty cycle value: the updating value of the duty cycle is configured through the REG_PWM_CDTY6 register as follows: REG_PWM_CDTY6 = u0[0] × REG_PWM_CPRD6, where u0[0] contains the computed duty cycle value obtained from the Stateflow of the CSL-MPPT algorithm [34].
5.2. Experimental Results and Discussion
5.2.1. Experimental Validation under the Irradiance Change Test:
5.2.2. Experimental Validation in Presence of Load Disturbances
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Achour, L.; Bouharkat, M.; Assas, O.; Behar, O. Hybrid model for estimating monthly global solar radiation for the Southern of Algeria:(Case study: Tamanrasset, Algeria). Energy 2017, 135, 526–539. [Google Scholar] [CrossRef]
- Kok Soon, T.; Mekhilef, S.; Safari, A. Simple and low cost incremental conductance maximum power point tracking using buck-boost converter. J. Renew. Sustain. Energy 2013, 5, 023106. [Google Scholar] [CrossRef]
- Azevedo, G.; Cavalcanti, M.; Oliveira, K.; Neves, F.; Lins, Z. Comparative evaluation of maximum power point tracking methods for photovoltaic systems. J. Sol. Energy Eng. 2009, 131, 031006. [Google Scholar] [CrossRef]
- Kjær, S.B. Evaluation of the “hill climbing” and the “incremental conductance” maximum power point trackers for photovoltaic power systems. IEEE Trans. Energy Convers. 2012, 27, 922–929. [Google Scholar] [CrossRef]
- Karami, N.; Moubayed, N.; Outbib, R. General review and classification of different MPPT Techniques. Renew. Sustain. Energy Rev. 2017, 68, 1–18. [Google Scholar] [CrossRef]
- Ahmed, J.; Salam, Z. An enhanced adaptive P&O MPPT for fast and efficient tracking under varying environmental conditions. IEEE Trans. Sustain. Energy 2018, 9, 1487–1496. [Google Scholar]
- Safari, A.; Mekhilef, S. Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter. IEEE Trans. Ind. Electron. 2010, 58, 1154–1161. [Google Scholar] [CrossRef]
- Huynh, D.C.; Dunnigan, M.W. Development and comparison of an improved incremental conductance algorithm for tracking the MPP of a solar PV panel. IEEE Trans. Sustain. Energy 2016, 7, 1421–1429. [Google Scholar] [CrossRef]
- Lashab, A.; Sera, D.; Guerrero, J.M. A dual-discrete model predictive control-based MPPT for PV systems. IEEE Trans. Power Electron. 2019, 34, 9686–9697. [Google Scholar] [CrossRef]
- Valenciaga, F.; Inthamoussou, F. A novel PV-MPPT method based on a second order sliding mode gradient observer. Energy Convers. Manag. 2018, 176, 422–430. [Google Scholar] [CrossRef]
- Bawa, D.; Patil, C. Fuzzy control based solar tracker using Arduino Uno. Int. J. Eng. Innov. Technol. 2013, 2, 179–187. [Google Scholar]
- Kermadi, M.; Berkouk, E.M. Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study. Renew. Sustain. Energy Rev. 2017, 69, 369–386. [Google Scholar] [CrossRef]
- Labbi, Y.; Attous, D.B. Maximum Photovoltaic Power Tracking under Different Conditions Using a Genetic Algorithm and Particle Swarm Optimization. J. Electr. Control Eng. Dec 2012, 2, 7–13. [Google Scholar]
- Ram, J.P.; Rajasekar, N. A novel flower pollination based global maximum power point method for solar maximum power point tracking. IEEE Trans. Power Electron. 2016, 32, 8486–8499. [Google Scholar]
- Du, Y.; Yan, K.; Ren, Z.; Xiao, W. Designing localized MPPT for PV systems using fuzzy-weighted extreme learning machine. Energies 2018, 11, 2615. [Google Scholar] [CrossRef]
- Pillai, D.S.; Ram, J.P.; Ghias, A.M.; Mahmud, M.A.; Rajasekar, N. An Accurate, Shade Detection-Based Hybrid Maximum Power Point Tracking Approach for PV Systems. IEEE Trans. Power Electron. 2019, 35, 6594–6608. [Google Scholar] [CrossRef]
- Fannakh, M.; Elhafyani, M.L.; Zouggar, S. Hardware implementation of the fuzzy logic MPPT in an Arduino card using a Simulink support package for PV application. IET Renew. Power Gener. 2018, 13, 510–518. [Google Scholar] [CrossRef]
- Killi, M.; Samanta, S. An adaptive voltage-sensor-based MPPT for photovoltaic systems with SEPIC converter including steady-state and drift analysis. IEEE Trans. Ind. Electron. 2015, 62, 7609–7619. [Google Scholar] [CrossRef]
- Motahhir, S.; Chalh, A.; El Ghzizal, A.; Derouich, A. Development of a low-cost PV system using an improved INC algorithm and a PV panel Proteus model. J. Clean. Prod. 2018, 204, 355–365. [Google Scholar] [CrossRef]
- Killi, M.; Samanta, S. Voltage-Sensor-Based MPPT for Stand-Alone PV Systems Through Voltage Reference Control. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 7, 1399–1407. [Google Scholar] [CrossRef]
- Dasgupta, N.; Pandey, A.; Mukerjee, A.K. Voltage-sensing-based photovoltaic MPPT with improved tracking and drift avoidance capabilities. Sol. Energy Mater. Sol. Cells 2008, 92, 1552–1558. [Google Scholar] [CrossRef]
- Metry, M.; Shadmand, M.B.; Balog, R.S.; Abu-Rub, H. MPPT of photovoltaic systems using sensorless current-based model predictive control. IEEE Trans. Ind. Appl. 2016, 53, 1157–1167. [Google Scholar] [CrossRef]
- Veerachary, M.; Senjyu, T.; Uezato, K. Voltage-based maximum power point tracking control of PV system. IEEE Trans. Aerosp. Electron. Syst. 2002, 38, 262–270. [Google Scholar] [CrossRef]
- Harrag, A.; Messalti, S.; Daili, Y. Innovative Single Sensor Neural Network PV MPPT. In Proceedings of the 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, France, 23–26 April 2019; pp. 1895–1899. [Google Scholar]
- Kermadi, M.; Mekhilef, S.; Salam, Z.; Ahmed, J.; Berkouk, E.M. Assessment of maximum power point trackers performance using direct and indirect control methods. Int. Trans. Electr. Energy Syst. 2020, 30, e12565. [Google Scholar] [CrossRef]
- Ishaque, K.; Salam, Z.; Shamsudin, A.; Amjad, M. A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm. Appl. Energy 2012, 99, 414–422. [Google Scholar] [CrossRef]
- Kermadi, M.; Salam, Z.; Ahmed, J.; Berkouk, E.M. An effective hybrid maximum power point tracker of photovoltaic arrays for complex partial shading conditions. IEEE Trans. Ind. Electron. 2018, 66, 6990–7000. [Google Scholar] [CrossRef]
- Loukriz, A.; Haddadi, M.; Messalti, S. Simulation and experimental design of a new advanced variable step size Incremental Conductance MPPT algorithm for PV systems. ISA Trans. 2016, 62, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Slotine, J.-J.E.; Li, W. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1991; Volume 199. [Google Scholar]
- Kermadi, M.; Salam, Z.; Berkouk, E.M. A rule-based power management controller using stateflow for grid-connected PV-battery energy system supplying household load. In Proceedings of the 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Charlotte, NC, USA, 25–28 June 2018; pp. 1–6. [Google Scholar]
- Bründlinger, R.; Henze, N.; Häberlin, H.; Burger, B.; Bergmann, A.; Baumgartner, F. prEN 50530–The New European Standard for Performance Characterisation of PV Inverters. In Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 21–24 September 2009; pp. 3105–3109. [Google Scholar]
- Zurbriggen, I.G.; Ordonez, M. PV Energy Harvesting Under Extremely Fast Changing Irradiance: State-Plane Direct MPPT. IEEE Trans. Ind. Electron. 2019, 66, 1852–1861. [Google Scholar] [CrossRef]
- Simulink Support Package for Arduino Hardware. 2020. Available online: https://www.mathworks.com/matlabcentral/fileexchange/40312-simulink-support-package-for-arduino-hardware (accessed on 7 September 2022).
- Atmel. SAM3X/SAM3A Series Datasheet; Atmel Corporation: San Jose, CA, USA, 2015; p. 1459. [Google Scholar]
- Voltage Transducer LV25P. 2020. Available online: https://www.lem.com/sites/default/files/products_datasheets/lv_25-p.pdf (accessed on 3 October 2022).
- Current Transducer LA25-NP/SP25. 2020. Available online: https://www.lem.com/sites/default/files/products_datasheets/la%2025-np%20sp25.pdf (accessed on 3 October 2022).
Authors | MPPT Algorithm | Microcontroller Used |
---|---|---|
Killi et al., 2015 [18] | Voltage-based MPPT | Atmega2560 |
Fannakh et al., 2018 [17] | Fuzzy logic | Atmega2560 |
Motahir et al., 2018 [19] | Modified Incremental Conductance (IncCond) | Atmega328p |
Killi et al., 2018 [20] | Voltage-Reference-based MPPT | Atmega2560 |
Authors | Objective Function (Q) | Converter | Controller Type |
---|---|---|---|
Killi et al. [18] | SEPIC | Atmega2560 (AVR core) | |
Dasgupta et al. [21] | Buck | ADuC831 (8052 core) | |
Harrag et al. [24] | ANN based on | Boost | Matlab/ Simulink |
Proposed | Buck-boost | SAM3X8E (ARM-Cortex M3 core) |
Parameters | Labels | Values |
---|---|---|
Max Power | Pmax | 85 W |
Max Voltage | Vmax | 17.85 V |
Max current | Imax | 4.77 A |
Short-Circuit | Isc | 5.15 A |
Open Circuit voltage | Voc | 21.8 V |
Temperature coefficient of ISC | KV | 0.06%/°C |
Temperature coefficient of VOC | KI | −0.35%/°C |
Number of cells | NS | 36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obeidi, N.; Kermadi, M.; Belmadani, B.; Allag, A.; Achour, L.; Mekhilef, S. A Current Sensorless Control of Buck-Boost Converter for Maximum Power Point Tracking in Photovoltaic Applications. Energies 2022, 15, 7811. https://doi.org/10.3390/en15207811
Obeidi N, Kermadi M, Belmadani B, Allag A, Achour L, Mekhilef S. A Current Sensorless Control of Buck-Boost Converter for Maximum Power Point Tracking in Photovoltaic Applications. Energies. 2022; 15(20):7811. https://doi.org/10.3390/en15207811
Chicago/Turabian StyleObeidi, Nabil, Mostefa Kermadi, Bachir Belmadani, Abdelkarim Allag, Lazhar Achour, and Saad Mekhilef. 2022. "A Current Sensorless Control of Buck-Boost Converter for Maximum Power Point Tracking in Photovoltaic Applications" Energies 15, no. 20: 7811. https://doi.org/10.3390/en15207811
APA StyleObeidi, N., Kermadi, M., Belmadani, B., Allag, A., Achour, L., & Mekhilef, S. (2022). A Current Sensorless Control of Buck-Boost Converter for Maximum Power Point Tracking in Photovoltaic Applications. Energies, 15(20), 7811. https://doi.org/10.3390/en15207811