Effect of Nonlinear Spring Characteristics on the Efficiency of Free-Piston Engine Generator
Abstract
:1. Introduction
2. Principle of FPEG
2.1. Basic Structure and Energy Flow of the FPEG
2.2. Specifications and Repulsion Force Characteristics of the Air Cylinder
2.3. Relationship between Drive Frequency and Efficiency
3. Effect of the Air Cylinder Parameters on the Piston Drive Frequency
3.1. Simulation Method
3.1.1. Linear Machine Part
3.1.2. Engine Part
3.1.3. Air Cylinder Part
3.2. Simulation Results
4. Effect of the Air Cylinder Parameters on the Efficiency
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bulkeley, H.; Broto, C.V.; Edwards, G. Bringing climate change to the city: Towards low carbon urbanism? Local Environ. 2012, 17, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Peyerl, D.; Barbosa, M.O.; Ciotta, M.; Pelissari, M.R.; Moretto, E.M. Linkages between the Promotion of Renewable Energy Policies and Low-Carbon Transition Trends in South America’s Electricity Sector. Energies 2022, 15, 4293. [Google Scholar] [CrossRef]
- Ehsani, M.; Gao, Y.; Miller, M.J. Hybrid Electric Vehicles: Architecture and Motor Drives. Proc. IEEE 2007, 95, 719–728. [Google Scholar] [CrossRef]
- Feng, H.; Guo, C.; Jia, B.; Zuo, Z.; Guo, Y.; Roskilly, T. Research on the intermediate process of a free-piston linear generator from cold start-up to stable operation: Numerical model and experimental results. Energy Convers. Manag. 2016, 122, 153–164. [Google Scholar] [CrossRef]
- Yan, H.; Xu, Z.; Lu, J.; Liu, D.; Jiang, X. A Reciprocating Motion Control Strategy of Single-Cylinder Free-Piston Engine Generator. Electronics 2020, 9, 245. [Google Scholar] [CrossRef] [Green Version]
- Smallbone, A.; Hanipah, R.M.; Jia, B.; Scott, T.; Heslop, J.; Towell, B.; Lawrence, C.; Roy, S.; Shivaprasad, K.V.; Roskilly, P.A. Realization of a Novel Free-Piston Engine Generator for Hybrid-Electric Vehicle Applications. Energy Fuels 2020, 34, 12926–12939. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Goto, T.; Zheng, J.; Irie, S. Resonant Combustion Start Considering Potential Energy of Free-Piston Engine Generator. Energies 2020, 13, 5754. [Google Scholar] [CrossRef]
- Chiong, M.; Chong, T.C.; Ng, J.-H.; Mashruk, S.; Chong, F.W.W.; Samiran, A.N.; Mong, R.G.; Valera-Medina, A. Advancements of combustion technologies in the ammonia-fuelled engines. Energy Convers. Manag. 2021, 244, 114460. [Google Scholar] [CrossRef]
- Thawko, A.; Eyal, A.; Tartakovsky, L. Experimental comparison of performance and emissions of a direct-injection engine fed with alternative gaseous fuels. Energy Convers. Manag. 2022, 251, 114988. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, H.; Zuo, Z. Numerical Investigation of a Free-Piston Hydrogen-Gasoline Engine Linear Generator. Energies 2020, 13, 4685. [Google Scholar] [CrossRef]
- Li, J.; Zuo, Z.; Jia, B.; Feng, H.; Wei, Y.; Zhang, Z.; Smallbone, A.; Roskilly, P.A. Comparative analysis on friction characteristics between free-piston engine generator and traditional crankshaft engine. Energy Convers. Manag. 2021, 245, 114630. [Google Scholar] [CrossRef]
- Yuan, C.; Xu, J.; Feng, H.; He, Y. Friction characteristics of piston rings in a free-piston engine generator. Int. J. Engine Res. 2017, 18, 871–885. [Google Scholar] [CrossRef]
- Irie, S.; Zheng, J.; Sato, M.; Mizuno, T.; Nishimura, F.; Naganuma, K. Loss-Reduction Effect of Varying the Mover Motion in a Dual-Sided Free-Piston Engine Generator System. In Proceedings of the 13th International Symposium on Linear Drives for Industry Applications (LDIA), Wuhan, China, 1–3 July 2021. [Google Scholar]
- Zheng, J.; Naganuma, K.; Nirei, M.; Irie, S.; Sato, M.; Mizuno, T.M. Improvement of thermal efficiency via high-frequency driving of mover in free-piston engine linear generator. In Proceedings of the 23rd International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan, 24–27 November 2020. [Google Scholar]
- Zhang, C.; Sun, Z. Using variable piston trajectory to reduce engine-out emissions. Appl. Energy 2016, 170, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Yuan, C.; Li, J. Control of Magnetoelectric Load to Maintain Stable Compression Ratio for Free Piston Linear Engine Systems. Int. J. Struct. Stab. Dyn. 2021, 21, 2150017. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, F.; Li, L.; Xu, Z.; Liu, L.; Yang, G.; Lian, H.; Tian, Y. A Free-Piston Linear Generator Control Strategy for Improving Output Power. Energies 2018, 11, 135. [Google Scholar] [CrossRef] [Green Version]
- Guo, G.; Feng, H.; Jia, B.; Zuo, Z.; Guo, Y.; Roskilly, T. Research on the operation characteristics of a free-piston linear generator: Numerical model and experimental results. Energy Convers. Manag. 2017, 131, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Irie, S.; Zheng, J.; Mizuno, T.; Nishimura, F.; Naganuma, K. Generator Design Considering Mover Action to Improve Energy Conversion Efficiency in a Free-Piston Engine Generator. Electronics 2021, 10, 2142. [Google Scholar] [CrossRef]
- Yuan, C.; He, L.; Zhou, L. Numerical simulation of the effect of spring dynamics on the combustion of free piston linear engine. Energy 2022, 254, 124241. [Google Scholar] [CrossRef]
- Xu, Y.; Xue, X.; Wang, Y.; Ai, M. Performance characteristics of compressed air-driven free-piston linear generator (FPLG) system—A simulation study. Appl. Therm. Eng. 2019, 160, 114013. [Google Scholar] [CrossRef]
- Kosaka, H.; Akita, T.; Moriya, K.; Goto, S.; Hotta, Y.; Umeno, T.; Nakakita, K. Development of Free Piston Engine Linear Generator System Part 1—Investigation of Fundamental Characteristics; SAE Technical Papers 2014-01-1203; SAE International: Warrendale, PA, USA, 2014. [Google Scholar]
- Sato, M.; Nirei, M.; Yamanaka, Y.; Suzuki, T.; Goto, T.; Bu, Y.; Mizuno, T. Effect of Copper Loss Reduction with Output Dispersion in a Free-Piston Engine Linear Generator System. IEEJ T. Ind. Appl. 2019, 14, 1703–1710. [Google Scholar] [CrossRef]
- Nakanishi, K.; Okada, Y.; Sera, K.; Minami, K.; Kadota, I. New Approach for Piston Assembly Friction Analysis Based on Empirical Data. Trans. Soc. Automot. Eng. Jpn. 2010, 41, 301–305. [Google Scholar]
- Jia, B.; Smallbone, A.; Zuo, Z.; Feng, H.; Roskilly, P.A. Design and simulation of a two- or four-stroke free-piston engine generator for range extender applications. Energy Convers. Manag. 2016, 111, 289–298. [Google Scholar] [CrossRef]
- Sato, M.; Nirei, M.; Yamanaka, Y.; Murata, H.; Bu, Y.; Mizuno, T. Operation Range of Generation Braking Force to Achieve High Efficiency Considering Combustion in a Free-Piston Engine Linear Generator System. IEEJ J. Ind. Appl. 2018, 7, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Nirei, M.; Yamanaka, Y.; Bu, Y.; Mizuno, T. High Power Density by Combining of a Double Stator and an Opposite-magnets Linear Generator in a Dual-type Free-piston Engine Generator. Int. J. Appl. Electromagn. Mech. 2021, 65, 355–370. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Dhanasekaran, S. Design of a Slot-Spaced Permanent Magnet Linear Alternator Based on Numerical Analysis. Energies 2022, 15, 4523. [Google Scholar] [CrossRef]
- Odunlami, O.A.; Oderinde, O.K.; Akeredolu, F.A.; Sonibare, J.A.; Obanla, O.R.; Ojewumi, M.E. The effect of air-fuel ratio on tailpipe exhaust emission of motorcycles. Fuel Commun. 2022, 11, 100040. [Google Scholar] [CrossRef]
- Moriya, K.; Goto, S.; Akita, T.; Kosaka, H.; Hotta, Y.; Nakakita, K. Development of Free Piston Engine Linear Generator System Part 3—Novel Control Method of Linear Generator for to Improve Efficiency and Stability; SAE Technical Papers 2016-01-0685; SAE International: Warrendale, PA, USA, 2016. [Google Scholar]
- Kosaka, H.; Akita, T.; Goto, S.; Hotta, Y. Development of free piston engine linear generator system and a resonant pendulum type control method. Int. J. Engine Res. 2021, 22, 2254–2266. [Google Scholar] [CrossRef]
- Mitianiec, W. Assessment of total efficiency in adiabatic engines. Scientific Conference on Automotive Vehicles and Combustion Engines. IOP Conf. Ser. Mater. Sci. Eng. 2016, 148, 012080. [Google Scholar] [CrossRef]
Item | Note |
---|---|
Software | JMAG-Designer (×64) Ver. 19.1 |
Analysis conditions | Two-dimensional axisymmetric transient response magnetic field analysis, Iron loss analysis |
Solution | FEM |
Mesh size | (1) Stator: 0.2 mm (2) Piston: 0.2 mm (3) Air: Auto |
Materials | (1) Core: 20HX1200(Nippon steel and sumitomo metal corp.) (2) Permanent magnet: NEOMAX-42BH(Hitachi metal, Ltd.) (3) Air: (ρ = ∞ Ωm, μ’ = 1, μ’’ = 0) |
Item (Unit) | Value |
---|---|
Dimensions of stator (mm) | 158 × 263.4 |
Dimensions of mover (mm) | 118 × 111.6 |
Piston mass (kg) | 2.94 |
Width of teeth (mm) | 3.0 |
Number of poles | 12 |
Thickness of the magnet (mm) | 4.65 |
Width of the magnet (mm) | 4.65 |
Thickness of back yoke (mm) | 3.5 |
Generation force constant (N/A) | 18.5 |
Resistance of armature coils (mΩ/Phase) | 69.8 |
Inductance of armature coils (mH/Phase) | 0.362 |
Item (Unit) | Value |
---|---|
Amount of injected fuel (mg/cycle) | 13.2 |
Bore (mm) | 68.0 |
Stroke (mm) | 136 |
Displacement (cm3) | 494 |
Volume of the combustion chamber (cm3) | 28.2 |
Length of the intake port (mm) | 108.8 |
Excess air ratio | 2.0 |
Compression ratio | 15 |
Combustion efficiency | 1.0 |
Ignition timing | MBT |
Item (Unit) | Symbol | (a) | (b) Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Value | ||||||||||
Maximum repulsion force (kN) | Fga_max | 6.2 | 8.2 | 10.2 | 12.3 | 7.0 | ||||
Quality factor | Q | 0.248 | 0.232 | 0.248 | 0.267 | 0.29 | 0.319 | |||
Compression ratio | ε | 4 | 4.5 | 4 | 3.5 | 3 | 2.5 | |||
Top surface area of air cylinder (cm2) | A | 60 | 80 | 100 | 120 | 56 | 68 | 85 | 110 | 150 |
Item (Unit) | Symbol | Case 1 | Case 2 | Case 3 | |
---|---|---|---|---|---|
Air cylinder | Pressure in air cylinder at TDC (Pa) | po | 101,300 | ||
Top surface area of air cylinder (cm2) | A | 130 | 115.2 | 90.8 | |
Compression ratio | ε | 2.75 | 3 | 4 | |
Piston motion | Piston drive frequency (Hz) | f | 32.2 | 32.2 | 34.1 |
Stroke (mm) | xb | 136 | |||
Efficiency | Energy conversion efficiency (%) | ηo | 42.0 | 42.1 | 42.5 |
Engine efficiency (%) | ηen | 44.7 | 44.7 | 44.9 | |
Thermal efficiency (%) | ηt | 47.3 | 47.3 | 47.5 | |
Mechanical efficiency (%) | ηm | 94.3 | 94.3 | 94.5 | |
Electrical efficiency (%) | ηe | 94.1 | 94.3 | 94.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irie, S.; Sato, M.; Mizuno, T.; Nishimura, F.; Naganuma, K. Effect of Nonlinear Spring Characteristics on the Efficiency of Free-Piston Engine Generator. Energies 2022, 15, 7579. https://doi.org/10.3390/en15207579
Irie S, Sato M, Mizuno T, Nishimura F, Naganuma K. Effect of Nonlinear Spring Characteristics on the Efficiency of Free-Piston Engine Generator. Energies. 2022; 15(20):7579. https://doi.org/10.3390/en15207579
Chicago/Turabian StyleIrie, Shoma, Mitsuhide Sato, Tsutomu Mizuno, Fumiya Nishimura, and Kaname Naganuma. 2022. "Effect of Nonlinear Spring Characteristics on the Efficiency of Free-Piston Engine Generator" Energies 15, no. 20: 7579. https://doi.org/10.3390/en15207579
APA StyleIrie, S., Sato, M., Mizuno, T., Nishimura, F., & Naganuma, K. (2022). Effect of Nonlinear Spring Characteristics on the Efficiency of Free-Piston Engine Generator. Energies, 15(20), 7579. https://doi.org/10.3390/en15207579