Measuring and Predicting the In-Ground Temperature Profile for Geothermal Energy Systems in the Desert of Arid Regions
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Experiment
2.2. Measuring Procedure
2.3. Predicting the In-Ground Temperature
3. Results and Discussion
3.1. The Measured In-Ground Temperature Profile
3.2. Validation of the Proposed Equations
3.2.1. Daily Average Validation
3.2.2. Monthly-Average Validation
3.3. Prediction of the In-Ground Temperature for z > 3 m
4. Conclusions and Recommendation
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbol | Description, (Unit) |
EMA | Mean absolute error (°C) |
ERMS | Root mean square error, (°C) |
GUT | Ground undisturbed temperature, (°C) |
t | Time, (h; day; month) |
Tamp | Amplitude of the annual ground surface temperature, (°C) |
Tm | Mean ground surface temperature, annual average, (°C) |
In-ground soil temperature, (°C) | |
Tg−meas | Measured in-ground temperature, (°C) |
Tg−sim | Simulated in-ground temperature, (°C) |
to | Time shift, (h; day; month) |
z | Depth below the soil surface, (m) |
αs | Thermal diffusivity of soil, (m2/month; m2/day; m2/h) |
References
- Dincer, I.; Acar, C. A review on clean energy solutions for better sustainability. Int. J. Energy Res. 2015, 39, 585–606. [Google Scholar] [CrossRef]
- Carotenuto, A.; Ceglia, F.; Marrasso, E.; Sasso, M.; Vanoli, L. Exergoeconomic optimization of polymeric heat exchangers for geothermal direct applications. Energies 2021, 14, 6994. [Google Scholar] [CrossRef]
- Esen, H.; Inalli, M.; Esen, M. Technoeconomic appraisal of a ground source heat pump system for a heating season in eastern Turkey. Energy Conv. Manage 2006, 47, 1281–1297. [Google Scholar] [CrossRef]
- Al-Ajmi, F.; Loveday, D.L.; Hanby, V.I. The cooling potential of earth-air heat exchangers for domestic buildings in a desert climate. Build. Environ. 2006, 41, 235–244. [Google Scholar] [CrossRef]
- Alkoaik, F.N.; Al-Faraj, A.A.; Al-Helal, I.M.; Ronnel, B.F.; Mansour, N.I.; Abdel-Ghany, A.M. Toward sustainability in rural areas: Composting palm tree residues in rotation bioreactors. Sustainability 2019, 12, 201. [Google Scholar] [CrossRef]
- Ceglia, F.; Macaluso, A.; Marrasso, E.; Sasso, M.; Vanoli, L. Modelling of polymeric shell and tube heat exchangers for low-Medium temperature geothermal applications. Energies 2020, 13, 2737. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.M.; Picuno, P.; Al-Helal, I.M.; Alsadon, A.; Ibrahim, A.; Shady, M. Radiometric characterization, solar and thermal radiation in a greenhouse as affected by shading configuration in an arid climate. Energies 2015, 8, 13928–13937. [Google Scholar] [CrossRef]
- Demirbas, A.; Alidrisi, H.; Ahmed, W.; Sheikh, M.H. Potential of geothermal energy in the Kingdom of Saudi Arabia. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 2238–2243. [Google Scholar] [CrossRef]
- Lashin, A.; Al Arifi, N. Geothermal energy potential of southwestern of Saudi Arabia “exploitation and possible power generation”: A case study at AlKhouba area-Jazan. Renew. Sustain. Energy Rev. 2014, 30, 771–789. [Google Scholar] [CrossRef]
- Bharadwaj, S.S.; Bansal, N.K. Temperature distribution inside ground for various surface conditions. Build. Environ. 1981, 16, 183–192. [Google Scholar] [CrossRef]
- Vidhi, R. A review of underground soil and night sky as passive heat sink: Design configurations and models. Energies 2018, 11, 2941. [Google Scholar] [CrossRef]
- Díaz-Hernández, H.P.; Macias-Melo, E.V.; Aguilar-Castro, K.M.; Hernández-Pérez, I.; Xamán, J.; Serrano-Arellano; López-Manrique, L.M. Experimental study of an earth to air heat exchanger (EAHE) for warm humid climatic conditions. Geothermics 2020, 84, 101741. [Google Scholar] [CrossRef]
- Hermes, V.F.; Ramalho, J.V.A.; Rocha, L.A.O.; Santos, E.D.; Marques, W.C.; Costi, J.; Rodrigues, M.K.; Isoldi, L.A. Further realistic annual simulations of earth-air heat exchangers installations in a coastal city. Sustain. Energy Technol. Assess. 2020, 37, 100603. [Google Scholar] [CrossRef]
- Bisoniya, T.S. Design of earth–air heat exchanger system. Geotherm. Energy 2015, 3, 18. [Google Scholar] [CrossRef]
- Cao, S.; Li, F.; Li, X.; Yang, B. Feasibility analysys of earth-air heat exchanger (EAHE) in a sports and culture centre in Tianjin, China. Case Stud. Therm. Eng. 2021, 26, 101054. [Google Scholar] [CrossRef]
- Le, A.T.; Wang, L.; Wang, Y.; Li, D. Measurement investigation on the feasibility of shallow geothermal energy for heating and cooling applied in agricultural greenhouses of Shouguang City: Ground temperature profiles and geothermal potential. Inf. Process. Agric. 2020, 8, 1–19. [Google Scholar] [CrossRef]
- Hebbal, B.; Marif, Y.; Hamdani, M.; Belhadj, M.M.; Bouguettaia, H.; Bechki, D. The geothermal potential of underground buildings in hot climates: Case of southern Algeria. Case Stud. Therm. Eng. 2021, 28, 101422. [Google Scholar] [CrossRef]
- Al-Helal, I.M.; Alsadon, A.; Marey, S.; Ibrahim, A.; Shady, M.; Abdel-Ghany, A.M. Geothermal energy potential for cooling/heating greenhouses in hot arid regions. Atmosphere 2022, 13, 105. [Google Scholar] [CrossRef]
- Tiwari, G.N.; Akhtar, M.A.; Shukla, A.; Emran Khan, M. Annual thermal performance of greenhouse with an earth-air heat exchanger: An experimental validation. Renew. Energy 2006, 31, 2432–2446. [Google Scholar] [CrossRef]
- Ghosal, M.K.; Tiwari, G.N.; Das, D.K.; Pandey, K.P. Modeling and comparative thermal performance of ground air collector and earth air heat exchanger for heating of greenhouse. Energy Build. 2005, 37, 613–621. [Google Scholar] [CrossRef]
- Ozgener, O.; Ozgener, L.; Goswami, D.Y. Experimental prediction of total thermal resistance of a closed loop EAHE for greenhouse cooling system. Int. Commun. Heat Mass Transf. 2011, 38, 711–717. [Google Scholar] [CrossRef]
- Ozgener, O.; Ozgener, L.; Goswami, D.Y. Seven years energetic and exergetic monitoring for vertical and horizontal EAHE assisted agricultural building heating. Renew. Sustain. Energy Rev. 2017, 80, 175–184. [Google Scholar] [CrossRef]
- Hepbasli, A. Low exergy modelling and performance analysis of greenhouses coupled to closed earth-to-air heat exchangers (EAHEs). Energy Build. 2013, 64, 224–230. [Google Scholar] [CrossRef]
- Bisoniya, T.S.; Kumar, A.; Baredar, P. Experimental and analytical studies of earth-air heat exchanger (EAHE) systems in India: A review. Renew. Sustain. Energy Rev. 2013, 19, 238–246. [Google Scholar] [CrossRef]
- Holman, J.P. Heat Transfer, 8th ed.; McGraw-Hill Inc.: New York, NY, USA, 1997. [Google Scholar]
- Ceglia, F.; Marrasso, E.; Roselli, C.; Sasso, M. Effect of layout and working fluid on heat transfer of polymeric shell and tube heat exchangers for small size geothermal ORC via 1-D numerical analysis. Geothermics 2021, 95, 102118. [Google Scholar] [CrossRef]
- Kusuda, T.O.; Bean, W. Annual Variation of Temperature Field and Heat Transfer under Heated Surface, Slab-On Grade Floor Heat Loss Calculation, Building Science Services 156; National Bureau of Standards: Gaithersburg, MD, USA, 1983. [Google Scholar]
- Morland, F.L.; Higgs, F.; Shih, J. (Eds.) Earth-covered buildings. In Proceedings of the Conference: Earth Covered Settlements in Fort Worth, Fort Worth, TX, USA, 17 May 1978; National Bureau of Standard: Gaithersburg, MD, USA, 1983. [Google Scholar]
- Labs, K. Passive Cooling; Cook, J., Ed.; MIT Press: Cambridge, MA, USA; London, UK, 1989. [Google Scholar]
- Aydin, M.; Sisman, A.; Gultekin, A.; Dehghan, B. An experimental performance comparison between different shallow ground heat exchangers. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Ghany, A.M.; Al-Helal, I.M.; Alsadon, A.; Ibrahim, A.; Shady, M. Measuring and Predicting the In-Ground Temperature Profile for Geothermal Energy Systems in the Desert of Arid Regions. Energies 2022, 15, 7268. https://doi.org/10.3390/en15197268
Abdel-Ghany AM, Al-Helal IM, Alsadon A, Ibrahim A, Shady M. Measuring and Predicting the In-Ground Temperature Profile for Geothermal Energy Systems in the Desert of Arid Regions. Energies. 2022; 15(19):7268. https://doi.org/10.3390/en15197268
Chicago/Turabian StyleAbdel-Ghany, Ahmed M., Ibrahim M. Al-Helal, Abdullah Alsadon, Abdullah Ibrahim, and Mohamed Shady. 2022. "Measuring and Predicting the In-Ground Temperature Profile for Geothermal Energy Systems in the Desert of Arid Regions" Energies 15, no. 19: 7268. https://doi.org/10.3390/en15197268
APA StyleAbdel-Ghany, A. M., Al-Helal, I. M., Alsadon, A., Ibrahim, A., & Shady, M. (2022). Measuring and Predicting the In-Ground Temperature Profile for Geothermal Energy Systems in the Desert of Arid Regions. Energies, 15(19), 7268. https://doi.org/10.3390/en15197268