Study on Two-Phase Permeation of Oxygen and Electrolyte in Lithium Air Battery Electrode Based on Digital Twin
Abstract
:1. Introduction
2. Numerical Simulation and Experiment
2.1. Reconstruction of Porous Electrode
2.2. Construction of Electrode with Different Electrolyte Saturation
2.3. Fundamentals of Simulation
2.4. Experimental Section
3. Results and Discussion
3.1. Pore size Distribution
3.2. Specific Surface Area and Triple-Phase Interface Area
3.3. Oxygen Effective Diffusion Coefficient
3.4. Effective Electrical Conductivity
3.5. Electrochemical Performance Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Habib, A.; Hasan, M.K.; Motakabber, S. A review: Energy storage system and balancing circuits for electric vehicle application. J. IET Power Electron. 2020, 14, 1–3. [Google Scholar] [CrossRef]
- Imanishi, N.; Yamamoto, O. Perspectives and challenges of rechargeable lithium–air batteries. J. Mater. Today Adv. 2019, 4, 100031. [Google Scholar] [CrossRef]
- Wang, L.; Hu, J.X.; Yu, Y.J. Lithium-air, lithium-sulfur, and sodium-ion, which secondary battery category is more environmentally friendly and promising based on footprint family indicators? J. Clean. Prod. 2020, 276, 124244. [Google Scholar] [CrossRef]
- Yu, H.; Liu, D.; Feng, X. Recent progresses, challenges and perspectives on rechargeable Li-O2 batteries. J. Nano Sel. 2020, 1, 1–15. [Google Scholar]
- Choi, Y.; Griep, M.H.; Kim, J.Y.; Ahn, T.Y. Lithium-protective hybrid lithium-air batteries with CFx, MoS2, and WS2 composite electrodes. J. Carbon Lett. 2020, 31, 331–338. [Google Scholar] [CrossRef]
- Wang, C.; Xie, Z.; Zhou, Z. Lithium-air batteries: Challenges coexist with opportunities. J. APL Mater. 2019, 7, 040701. [Google Scholar] [CrossRef]
- Zahoor, A.; Ghouri, Z.K.; Hashmi, S. Electrocatalysts for the Lithium air batteries: Current status and the challenges. J. ACS Sustain. Chem. Eng. 2019, 7, 14288–14320. [Google Scholar] [CrossRef]
- Kuang, Y.; Chen, C.; Kirsch, D.; Hu, L.B. Thick electrode batteries: Principles, opportunities, and challenges. J. Adv. Energy Mater. 2019, 9, 1901457. [Google Scholar] [CrossRef]
- Athika, M.; Devi, V.S.; Elumalai, P. Cauliflower-like hierarchical porous nickel/nickel ferrite/carbon composite as superior bifunctional catalyst for lithium-air battery. J. Chem. 2020, 5, 3529–3538. [Google Scholar] [CrossRef]
- Pakseresht, S.; Cetinkaya, T. Biologically synthesized TiO2 nanoparticles and their application as lithium-air battery cathodes-ScienceDirect. J. Ceram. Int. 2021, 47, 3994–4005. [Google Scholar] [CrossRef]
- Spoor, P.B.; ter Veen, W.R.; Janssen, L.J.J. Electrodeionization 1: Migration of nickel ions absorbed in a rigid, macroporous cation-exchange resin. J. Appl. Electrochem. 2001, 31, 523–530. [Google Scholar] [CrossRef]
- Dzyaz’ko, Y.S.; Rozhdestvenskaya, L.M.; Pal’chik, A.V. Recovery of Nickel Ions from Dilute Solutions by Electrodialysis Combined with Ion Exchange. Russ. J. Appl. Chem. 2005, 78, 414–421. [Google Scholar] [CrossRef]
- Spoor, P.B.; ter Veen, W.R.; Janssen, L.J.J. Electrodeionization 2: The Migration of nickel ions absorbed in a flexible ion-exchange resin. J. Appl. Electrochem. 2001, 31, 1071–1077. [Google Scholar] [CrossRef]
- Sanad, M.M.S.; Toghan, A. Unveiling the Role of Trivalent Cation Incorporation in Li-Rich Mn-Based Layered Cathode Materials for Low-Cost Lithium-Ion Batteries. Appl. Phys. A 2021, 127, 733. [Google Scholar] [CrossRef]
- Sanad, M.M.S.; El-Sadek, M.H. Porous Niobium Carbide as Promising Anode for High Performance Lithium-Ions Batteries via Cost-Effective Processing. Diam. Relat. Mater. 2022, 121, 108722. [Google Scholar] [CrossRef]
- Ghannam, M.M.; Heiba, Z.K.; Sanad, M.M.S.; Mohamed, M.B. Functional Properties of ZnMn2O4/MWCNT/Graphene Nanocomposite as Anode Material for Li-Ion Batteries. Appl. Phys. A 2020, 126, 332. [Google Scholar] [CrossRef]
- Hamidouche, F.; Sanad, M.M.S.; Ghebache, Z.; Boudieb, N. Effect of Polymerization Conditions on the Physicochemical and Electrochemical Properties of SnO2/Polypyrrole Composites for Supercapacitor Applications. J. Mol. Struct. 2022, 1251, 131964. [Google Scholar] [CrossRef]
- Gao, Y.; Jin, T.; Wu, X. The effect of fiber orientation on stochastic reconstruction and permeability of a carbon paper gas diffusion layer. J. Energ. 2019, 12, 2808. [Google Scholar] [CrossRef]
- Ortega-Ramirez, M.P.; Oxarango, L. Effect of X-ray mu CT resolution on the computation of permeability and dispersion coefficient for granular Soils. J. Transp. Porous Media 2021, 137, 307–326. [Google Scholar] [CrossRef]
- Soltani., P.; Azimian, M.; Wiegmann, A. Experimental and computational analysis of sound absorption behavior in needled nonwovens. J. Sound Vib. 2018, 426, 1–18. [Google Scholar] [CrossRef]
- Hui, Y.; Lee, S.; Chen, Y. Using three-dimensional image analysis techniques to understand the formation of the plastic layer during the heating of australian coking coal blends. J. Energy Fuels 2020, 34, 3153–3160. [Google Scholar] [CrossRef]
- Jing, H.; Faghri, A. Analysis of electrolyte level change in a lithium air battery. J. Power Sources 2016, 307, 45–55. [Google Scholar]
- Gwak, G.; Ju, H. Three-dimensional transient modeling of a non-aqueous electrolyte lithium-air battery. J. Electrochim. Acta 2016, 201, 395–409. [Google Scholar] [CrossRef]
- Ye, L.H.; Lv, W.Q.; Cui, J.Y.; Liang, Y.C.; Wu, P. Lithium-air baeries: Performance interplays with instability factors. J. Chemelectrochem. 2014, 2, 312–323. [Google Scholar] [CrossRef]
- Liu, T.; Vivek, J.P.; Zhao, E.W. Current challenges and routes forward for nonaqueous lithium-air batteries. J. Chem. Rev. 2020, 120, 6558–6625. [Google Scholar] [CrossRef]
- Lai, J.N.; Xing, Y.; Chen, N.; Li, L.; Wu, F.; Chen, R.J. Electrolytes for rechargeable lithium-air batteries. J. Angew. Chem. Int. Ed. 2020, 59, 2974–2997. [Google Scholar] [CrossRef]
- Esfahanian, V.; Dalakeh, M.T.; Aghamirzaie, N. Mathematical modeling of oxygen crossover in a lithium-oxygen battery. J. Appl. Energy 2019, 250, 1356–1365. [Google Scholar] [CrossRef]
- Padbury, R.; Zhang, X.W. Lithium-oxygen batteries-Limiting factors that affect performance. J. Power Sources 2011, 196, 4436–4444. [Google Scholar] [CrossRef]
- Xia, C.; Bender, C.L.; Bergner, B.; Peppler, K.; Janek, J. An electrolyte partially-wetted cathode improving oxygen diffusion in cathodes of non-aqueous Li-air batteries. J. Electrochem. Commun. 2013, 26, 93–96. [Google Scholar] [CrossRef]
- Aydin, O.; Zedda, M.; Zamel, N. Challenges associated with measuring the intrinsic electrical conductivity of carbon paper diffusion media. J. Fuel Cells 2015, 15, 537–544. [Google Scholar] [CrossRef]
- Tang, M.; Chang, J.C.; Kumar, S.R. Glyme-based electrolyte formulation analysis in aprotic lithium-oxygen battery and its cyclic stability. J. Energy 2019, 187, 115926. [Google Scholar] [CrossRef]
- Mohazabrad, F.; Wang, F.Z.; Li, X.L. Influence of the oxygen electrode open ratio and electrolyte evaporation on the performance of Li-O2 batteries. J. ACS Appl. Mater. Interfaces 2017, 9, 5459–15469. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.Z.; Li, X.L.; Hao, X.W. Review and recent advances in mass transfer in positive electrodes of aprotic LiO2 batteries. J. ACS Appl. Energy Mater. 2020, 3, 2258–2270. [Google Scholar] [CrossRef]
- Lawrence, M.; Jiang, Y. Porosity, Pore Size Distribution, Micro-Structure; Springer: Dordrecht, The Netherlands, 2017. [Google Scholar]
- Ledesma-Duran, A.; Hernandez, S.I.; Santamaria-Holek, I. Relation between the porosity and tortuosity of a membrane formed by disconnected irregular pores and the spatial diffusion coefficient of the Fick-Jacobs model. J. Phys. Rev. E 2017, 95, 052804. [Google Scholar] [CrossRef]
- Lv, J.C.; Chi, Y.; Zhao, C.Z. Experimental study of the supercritical CO2 diffusion coefficient in porous media under reservoir conditions. J. R. Soc. Open Sci. 2019, 6, 181902. [Google Scholar] [CrossRef]
- Cabral, G.J.; Teleken, J.T.; Carciofi, B. Solubility and effective diffusion coefficient of CO2 in fresh cheese (type minas frescal). J. Food Process Eng. 2021, 44, e13791. [Google Scholar] [CrossRef]
Parameters | Symbol | Value |
---|---|---|
Conductivity of MnO2 | σMnO2 | 454 S·m−1 |
Density of MnO2 | ρMnO2 | 5.03 kg·m3 |
Conductivity of carbon | σcar | 30,000 S·m−1 [30] |
Density of carbon | ρcar | 1800 kg·m3 |
Conductivity of electrolyte | σele | 0.225 S·m−1 [31] |
Density of electrolyte | ρele | 1009 kg·m3 [32] |
Diffusivity of oxygen in electrolyte | DO2 | 1.6 × 10−7 cm−2·s−1 [33] |
Diffusion coefficient of O2 in gas phase | Dsel | 1.89 × 10−5 m−2·s−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Zhang, T.; Zhang, T.; Xue, Z.; Sun, H. Study on Two-Phase Permeation of Oxygen and Electrolyte in Lithium Air Battery Electrode Based on Digital Twin. Energies 2022, 15, 6986. https://doi.org/10.3390/en15196986
Li Q, Zhang T, Zhang T, Xue Z, Sun H. Study on Two-Phase Permeation of Oxygen and Electrolyte in Lithium Air Battery Electrode Based on Digital Twin. Energies. 2022; 15(19):6986. https://doi.org/10.3390/en15196986
Chicago/Turabian StyleLi, Qiang, Tanghu Zhang, Tianyu Zhang, Zhichao Xue, and Hong Sun. 2022. "Study on Two-Phase Permeation of Oxygen and Electrolyte in Lithium Air Battery Electrode Based on Digital Twin" Energies 15, no. 19: 6986. https://doi.org/10.3390/en15196986
APA StyleLi, Q., Zhang, T., Zhang, T., Xue, Z., & Sun, H. (2022). Study on Two-Phase Permeation of Oxygen and Electrolyte in Lithium Air Battery Electrode Based on Digital Twin. Energies, 15(19), 6986. https://doi.org/10.3390/en15196986