The Modeling of Bubble Lift-Off Diameter in Vertical Subcooled Boiling Flow
Abstract
:1. Introduction
2. Modeling of Bubble Lift-Off Diameter
2.1. Force Analysis
2.2. Experimental Data Source from the Literature
3. Results and Discussion
3.1. Assessments of Existed and Present Models
3.2. The Effects of Dimensionless Parameters
3.2.1. Jacob Number
3.2.2. Prandtl Number
3.2.3. Reynolds Number
3.2.4. Dimensionless Subcooling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Fs | surface tension force (N) |
Fdu | bubble growth force (N) |
Fsl | shear lift force (N) |
ρ | density (kg/m3) |
V | volume (m3) |
U | velocity (m/s) |
t | time (s) |
Fqs | quasi-steady drag force (N) |
Fb | buoyancy force (N) |
R | bubble radius (m) |
D | bubble diameter (m) |
Ur | relative velocity (m/s) |
Cl | shear lift coefficient |
Gs | dimensionless shear rate |
λ | thermal conductivity (W/(m·K)) |
mean relative error | |
cp | heat capacity (J/(kg·K)) |
T | temperature (K) |
hfg | latent heat (J/kg) |
Cr | relative velocity coefficient |
Pr | Prandtl number |
Re | Reynolds number |
Ja | Jacob number |
T* | dimensionless subcooling |
Lo | Laplace length (m) |
surface tension (N/m) | |
advancing contact angle | |
receding contact angle | |
inclined angle | |
a | thermal diffusivity (m2/s) |
kinematic viscosity (m2/s) | |
n | data points |
Subscripts | |
w | wall |
sat | saturated |
l | liquid |
v | vapor |
g | gas |
b | bubble |
lo | lift-off |
x | x-direction |
y | y-direction |
References
- Chen, J.C. Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow. Ind. Eng. Chem. Process Des. Dev. 1966, 5, 322–329. [Google Scholar] [CrossRef]
- Gungor, K.E.; Winterton, R.H.S. A general correlation for flow boiling in tubes and annuli. Int. J. Heat Mass Transf. 1986, 29, 351–358. [Google Scholar] [CrossRef]
- Liu, Z.; Winterton, R.H.S. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. Int. J. Heat Mass Transf. 1991, 34, 2759–2766. [Google Scholar] [CrossRef]
- Kurul, N.; Podowski, M.Z. On the modeling of multidimensional effects in boiling channels. In Proceedings of the 27th National Heat Transfer Conference, Minneapolis, MN, USA, 28–31 July 1991; pp. 301–314. [Google Scholar]
- Warrier, G.R.; Dhir, V.K. Heat Transfer and Wall Heat Flux Partitioning During Subcooled Flow Nucleate Boiling—A Review. J. Heat Transf. 2006, 128, 1243. [Google Scholar] [CrossRef]
- Hoang, N.H.; Chu, I.-C.; Euh, D.-J.; Song, C.-H. A mechanistic model for predicting the maximum diameter of vapor bubbles in a subcooled boiling flow. Int. J. Heat Mass Transf. 2016, 94, 174–179. [Google Scholar] [CrossRef]
- Basu, N.; Warrier, G.R.; Dhir, V.K. Wall Heat Flux Partitioning During Subcooled Flow Boiling: Part 1—Model Development. J. Heat Transf. 2005, 127, 131. [Google Scholar] [CrossRef]
- Sateesh, G.; Das, S.K.; Balakrishnan, A.R. Analysis of pool boiling heat transfer: Effect of bubbles sliding on the heating surface. Int. J. Heat Mass Transf. 2005, 48, 1543–1553. [Google Scholar] [CrossRef]
- Yoo, J.; Estrada-Perez, C.E.; Hassan, Y.A. Area of bubble influence due to sliding bubbles in subcooled boiling flow. Int. J. Heat Mass Transf. 2018, 125, 43–52. [Google Scholar] [CrossRef]
- Zeng, L.Z.; Klausner, J.F. A unified model for the prediction of bubble detachment diameters in boiling systems—II. Flow boiling. Int. J. Heat Mass Transf. 1993, 36, 2271–2279. [Google Scholar] [CrossRef]
- Klausner, J.F.; Mei, R.; Bernhard, D.M.; Zheng, L.Z. Vapor bubble departure in forced convection boiling. Int. J. Heat Mass Transf. 1992, 36, 651–662. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, R.; Zhu, Z.; Ren, T.; Yan, C. A modified wall boiling model considering sliding bubbles based on the RPI wall boiling model. Int. J. Heat Mass Transf. 2020, 154, 119776. [Google Scholar] [CrossRef]
- Ishi, M.; Hibiki, T. Two-Fluid Dynamics of Two-Phase Flow, 2nd ed.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Fritz, W. The calculation of the maximum volume of steam bladders. Phys. Z 1935, 36, 379–384. [Google Scholar]
- Kocamustafaogullari, G.; Ishii, M. Interfacial area and nucleation site density in boiling systems. Int. J. Heat Mass Transf. 1983, 26, 1377–1387. [Google Scholar] [CrossRef]
- Sugrue, R.; Buongiorno, J. A modified force-balance model for prediction of bubble departure diameter in subcooled flow boiling. Nucl. Eng. Des. 2016, 305, 717–722. [Google Scholar] [CrossRef]
- Situ, R.; Hibiki, T.; Ishii, M.; Mori, M. Bubble lift-off size in forced convective subcooled boiling flow. Int. J. Heat Mass Transf. 2005, 48, 5536–5548. [Google Scholar] [CrossRef]
- Cho, Y.-J.; Yum, S.-B.; Lee, J.-H.; Park, G.-C. Development of bubble departure and lift-off diameter models in low heat flux and low flow velocity conditions. Int. J. Heat Mass Transf. 2011, 54, 3234–3244. [Google Scholar] [CrossRef]
- Ryu, S.U.; Kim, S.; Euh, D.-J. A study on the lift-off diameter of bubbles generated on horizontal tube. Ann. Nucl. Energy 2018, 111, 303–310. [Google Scholar] [CrossRef]
- Prodanovic, V.; Fraser, D.; Salcudean, M. Bubble behavior in subcooled flow boiling of water at low pressures and low flow rates. Int. J. Multiph. Flow 2002, 28, 1–19. [Google Scholar] [CrossRef]
- Chu, I.-C.; No, H.C.; Song, C.-H. Bubble Lift-off Diameter and Nucleation Frequency in Vertical Subcooled Boiling Flow. J. Nucl. Sci. Technol. 2011, 48, 936–949. [Google Scholar] [CrossRef]
- Unal, H.C. Maximum bubble diameter, maximum bubble growth time, and bubble growth rate during the subcooled nucleate flow boiling of water up to 17.7MN/m2. Int. J. Heat Mass Transf. 1976, 19, 643–649. [Google Scholar] [CrossRef]
- Basu, N. Modeling and Experiments for Wall Heat Flux Partitioning during Subcooled Flow Boiling of Water at Low Pressures. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 2003. [Google Scholar]
- Ahmadi, R.; Ueno, T.; Okawa, T. Bubble dynamics at boiling incipience in subcooled upward flow boiling. Int. J. Heat Mass Transf. 2012, 55, 488–497. [Google Scholar] [CrossRef]
- Du, J.; Zhao, C.; Bo, H. Investigation of bubble departure diameter in horizontal and vertical subcooled flow boiling. Int. J. Heat Mass Transf. 2018, 127, 796–805. [Google Scholar] [CrossRef]
- Chen, D.; Pan, L.-M.; Ren, S. Prediction of bubble detachment diameter in flow boiling based on force analysis. Nucl. Eng. Des. 2012, 243, 263–271. [Google Scholar] [CrossRef]
- Zuber, N. The dynamics of vapor bubbles in nonuniform temperature fields. Int. J. Heat Mass Transf. 1961, 2, 83–98. [Google Scholar] [CrossRef]
- Mei, R.; Klausner, J.F. Shear lift force on spherical bubbles. Int. J. Heat Fluid Flow 1994, 15, 62–65. [Google Scholar] [CrossRef]
- Okawa, T.; Kubota, H.; Ishida, T. Simultaneous measurement of void fraction and fundamental bubble parameters in subcooled flow boiling. Nucl. Eng. Des. 2007, 237, 1016–1024. [Google Scholar] [CrossRef]
- Okawa, T.; Kaiho, K.; Sakamoto, S.; Enoki, K. Observation and modelling of bubble dynamics in isolated bubble regime in subcooled flow boiling. Nucl. Eng. Des. 2018, 335, 400–408. [Google Scholar] [CrossRef]
Authors | Correlations | Applications |
---|---|---|
Situ et al. [17] | ||
Cho et al. [18] | ||
Prodanovic et al. [20] | ||
Chu et al. [21] | ||
Basu et al. [23] |
Parameters | Situ et al. [17] | Zeng et al. [10] | Prodanovic et al. [20] | Chu et al. [21] | Okawa et al. [30] | Ahmadi et al. [24] |
---|---|---|---|---|---|---|
Direction | Vertical | Horizontal | Vertical | Vertical | Vertical | Vertical |
Channel | Annulus | Square | Annulus | Annulus | Pipe | Rectangle |
Hydraulic Diameter (mm) | 19 | 25 | 9.3 | 22.25 | 20 | 13.33 |
Fluid | Water | R113 | Water | Water | Water | Water |
Material | Stainless steel | Nichrome | Stainless steel | NCF600 | Sapphire glass | Stainless steel |
Contact angle (°) | - | - | - | 89.9 | 45 | 18 |
Pressure (MPa) | 0.101 | 0.146–0.165 | 0.105–0.3 | 0.145 | 0.121–0.125 | 0.096–0.113 |
Heat flux (kW/m2) | 60.7–206 | 5.8–16.8 | 100–1200 | 135–201 | 67–549 | 160–318 |
Mass flow rate (kg/m2s) | 466.75–899.96 | 149–315 | 74.54–804.43 | 301–702 | 85.89–1421.97 | 169–497 |
Subcooling (°C) | 3–20 | Saturated | 10–60 | 3.4–22.6 | 9.2–20.8 | 6.5–20.6 |
Measured Dlo (mm) | 0.14–0.60 | 0.46–0.19 | 0.31–2.68 | 0.51–1.71 | 0.50–3.02 | 0.31–3.90 |
Data points | 90 | 38 | 54 | 14 | 30 | 14 |
Predictive Models | Experiments | ||||||
---|---|---|---|---|---|---|---|
Zeng et al. [10] | Situ et al. [17] | Prodanovic et al. [20] | Chu et al. [21] | Okawa et al. [30] | Ahmadi et al. [24] | Total | |
Prodanovic et al. [20] | 85.53% | 237.65% | 73.57% | 20.19% | 41.11% | 56.82% | 122.70% |
Situ et al. [17] | 84.67% | 40.22% | 736.53% | 129.24% | 318.66% | 894.57% | 258.81% |
Basu et al. [23] | 69.54% | 102.53% | 44.63% | 21.71% | 36.77% | 73.61% | 69.92% |
Present study | 12.15% | 25.44% | 30.14% | 27.26% | 29.90% | 45.91% | 26.95% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Zhao, C.; Bo, H.; Ren, X. The Modeling of Bubble Lift-Off Diameter in Vertical Subcooled Boiling Flow. Energies 2022, 15, 6857. https://doi.org/10.3390/en15186857
Du J, Zhao C, Bo H, Ren X. The Modeling of Bubble Lift-Off Diameter in Vertical Subcooled Boiling Flow. Energies. 2022; 15(18):6857. https://doi.org/10.3390/en15186857
Chicago/Turabian StyleDu, Jingyu, Chenru Zhao, Hanliang Bo, and Xin Ren. 2022. "The Modeling of Bubble Lift-Off Diameter in Vertical Subcooled Boiling Flow" Energies 15, no. 18: 6857. https://doi.org/10.3390/en15186857
APA StyleDu, J., Zhao, C., Bo, H., & Ren, X. (2022). The Modeling of Bubble Lift-Off Diameter in Vertical Subcooled Boiling Flow. Energies, 15(18), 6857. https://doi.org/10.3390/en15186857