Economic Analysis on Hydrogen Pipeline Infrastructure Establishment Scenarios: Case Study of South Korea
Abstract
:1. Introduction
2. Scenario Modeling for Economic Analysis
2.1. Hydrogen Pipeline Establishment Scenarios
2.1.1. Scenario 1: Conventional Natural Gas Pipeline Modification
2.1.2. Scenario 2: Short-Distance Hydrogen Pipeline
2.1.3. Scenario 3: Long-Distance Main Hydrogen Pipeline
2.2. Hydrogen Pipeline Establishment Cost Modeling
2.2.1. Hydrogen Pipeline Material Cost Modeling
2.2.2. Hydrogen Pipeline Total Establishment Cost Modeling
3. Results and Discussion
3.1. Hydrogen Pipeline Establishment Cost
3.2. Discussion of the Scenarios
3.3. Implications
3.4. Limitations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
API | American Petroleum Institute |
API RP | American Petroleum Institute Recommended Practice |
API 5L | API code for pipelines for oil and natural gas transportation |
A106 Gr. B | American Society of Mechanical Engineers(ASME) code for seamless carbon steel pipe for high temperature service |
SCH | Schedule number that indicates the thickness of a pipe |
Symbols | |
NG | Natural gas |
dia | Diameter of pipe |
len | Length of pipeline |
PCC | Pipeline construction cost |
Material | Material cost |
Labor | Labor cost |
Misc | Miscellaneous cost |
References
- Stern, A.G. A new sustainable hydrogen clean energy paradigm. Int. J. Hydrogen Energy 2018, 43, 4244–4255. [Google Scholar] [CrossRef]
- Jang, Y.-H.; Lee, S.; Shin, H.Y.; Bae, J. Development and evaluation of a 3-cell stack of metal-based solid oxide fuel cells fabricated via a sinter-joining method for auxiliary power unit applications. Int. J. Hydrogen Energy 2018, 43, 16215–16229. [Google Scholar] [CrossRef]
- Kang, S.; Lee, J.; Cho, G.Y.; Kim, Y.; Lee, S.; Cha, S.W.; Bae, J. Scalable fabrication process of thin-film solid oxide fuel cells with an anode functional layer design and a sputtered electrolyte. Int. J. Hydrogen Energy 2020, 45, 33980–33992. [Google Scholar] [CrossRef]
- Lee, S.; Jang, Y.-h.; Shin, H.Y.; Lee, K.; Bae, M.; Kang, J.; Bae, J. Reliable sealing design of metal-based solid oxide fuel cell stacks for transportation applications. Int. J. Hydrogen Energy 2019, 44, 30280–30292. [Google Scholar] [CrossRef]
- Sun, H.; Edziah, B.K.; Sun, C.; Kporsu, A.K. Institutional quality, green innovation and energy efficiency. Energy Policy 2019, 135, 111002. [Google Scholar] [CrossRef]
- Parkinson, B.; Patzschke, C.F.; Nikolis, D.; Raman, S.; Dankworth, D.C.; Hellgardt, K. Methane pyrolysis in monovalent alkali halide salts: Kinetics and pyrolytic carbon properties. Int. J. Hydrogen Energy 2021, 46, 6225–6238. [Google Scholar] [CrossRef]
- Hydrogen Council. Hydrogen Scaling up: A Sustainable Pathway for the Global Energy Transition. 2017. Available online: http://hydrogencouncil.com/wp-content/uploads/2017/06/Hydrogen-Council-Vision-Document.pdf (accessed on 19 August 2022).
- Kang, K.-W.; Jeon, C.-H.; Jeon, H.-M.; Kim, J.-S. Empirical study on the application of fuel cell-battery hybrid electric propulsion systems in small coastal ships. J. Korean Soc. Mar. Eng. 2019, 43, 648–654. [Google Scholar] [CrossRef]
- Chu, K.H.; Lim, J.; Mang, J.S.; Hwang, M.-H. Evaluation of strategic directions for supply and demand of green hydrogen in South Korea. Int. J. Hydrogen Energy 2021, 47, 1409–1424. [Google Scholar] [CrossRef]
- Stangarone, T. South Korean efforts to transition to a hydrogen economy. Clean Technol. Environ. Policy 2021, 23, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Nordio, M.; Wassie, S.A.; Van Sint Annaland, M.; Pacheco Tanaka, D.A.; Viviente Sole, J.L.; Gallucci, F. Techno-economic evaluation on a hybrid technology for low hydrogen concentration separation and purification from natural gas grid. Int. J. Hydrogen Energy 2021, 46, 23417–23435. [Google Scholar] [CrossRef]
- Kim, H.-S.; Hong, S.-H.; Hwang, T.-Y. Comparative Evaluation of Environmental Availability for Hydrogen Supply System with Existing Natural Gas Pipeline. J. Korean Inst. Gas 2009, 13, 28–32. [Google Scholar]
- Liu, B.; Liu, S.; Guo, S.; Zhang, S. Economic study of a large-scale renewable hydrogen application utilizing surplus renewable energy and natural gas pipeline transportation in China. Int. J. Hydrogen Energy 2020, 45, 1385–1398. [Google Scholar] [CrossRef]
- Parker, N. Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs; Institute of Tansportation Studies, University of California: Davis, CA, USA, 2004; Available online: https://escholarship.org/content/qt9m40m75r/qt9m40m75r.pdf (accessed on 19 August 2022).
- Fekete, J.R.; Sowards, J.W.; Amaro, R.L. Economic impact of applying high strength steels in hydrogen gas pipelines. Int. J. Hydrogen Energy 2015, 40, 10547–10558. [Google Scholar] [CrossRef]
- Penev, M.; Zuboy, J.; Hunter, C. Economic analysis of a high-pressure urban pipeline concept (HyLine) for delivering hydrogen to retail fueling stations. Transp. Res. Part D Transp. Environ. 2019, 77, 92–105. [Google Scholar] [CrossRef]
- Haeseldonckx, D.; D’haeseleer, W. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure. Int. J. Hydrogen Energy 2007, 32, 1381–1386. [Google Scholar] [CrossRef]
- KGS Code. Available online: https://cyber.kgs.or.kr/kgscode.eng.index.do (accessed on 19 August 2022).
- API RP 941. Available online: https://www.api.org/ (accessed on 19 August 2022).
- Price List at Trident Steel. Available online: https://www.tridentsteel.co.in/ (accessed on 19 August 2022).
- Current Status of Pipeline Length by Pipe Diameter by Korea Gas Corporation. Available online: https://www.kgs.or.kr/ (accessed on 19 August 2022).
- International Energy Agency. Global Hydrogen Review 2021; OECD Publishing Paris: Paris, France, 2021; Available online: https://read.oecd-ilibrary.org/energy/global-hydrogen-review-2021_39351842-en#page1 (accessed on 19 August 2022).
- Lee, S.; Kim, T.; Han, G.; Kang, S.; Yoo, Y.-S.; Jeon, S.-Y.; Bae, J. Comparative energetic studies on liquid organic hydrogen carrier: A net energy analysis. Renew. Sustain. Energy Rev. 2021, 150, 111447. [Google Scholar] [CrossRef]
Dia (″) | Length (km) | Rate (%) |
---|---|---|
4 | 1.09 | 0.02 |
10 | 2.4 | 0.05 |
12 | 10.49 | 0.21 |
16 | 2.8 | 0.06 |
20 | 1337.61 | 26.91 |
24 | 48.39 | 0.97 |
26 | 374.9 | 7.54 |
30 | 3165.8 | 63.69 |
36 | 27.5 | 0.55 |
Dia (″) | Material | SCH | Thickness (mm) | Weight (kg/km) | Cost (USD/km) |
---|---|---|---|---|---|
4 | API 5L X42 | SCH 80 | 8.56 | 22,300 | 25,422 |
10 | API 5L X42 | SCH 80 | 15.10 | 96,000 | 109,440 |
12 | API 5L X42 | SCH 80 | 17.40 | 132,000 | 170,280 |
16 | API 5L X42 | SCH 80 | 21.44 | 203,000 | 284,200 |
20 | API 5L X42 | SCH 80 | 26.20 | 311,000 | 528,700 |
24 | API 5L X65 | SCH 80 | 30.90 | 442,000 | 1,502,800 |
26 | API 5L X65 | SCH 80 | 32.91 | 477,302 | 1,783,428 |
30 | API 5L X65 | SCH 80 | 37.36 | 604,540 | 2,700,327 |
36 | API 5L X65 | SCH 80 | 44.03 | 816,930 | 4,729,372 |
Dia (″) | Material | SCH | Thickness (mm) | Weight (kg/km) | Cost (USD/km) |
---|---|---|---|---|---|
4 | A106 Gr. B | SCH 80 | 8.08 | 18,630 | 22,069 |
10 | A106 Gr. B | SCH 80 | 14.82 | 84,817 | 107,718 |
12 | A106 Gr. B | SCH 80 | 17.10 | 118,486 | 154,032 |
16 | A106 Gr. B | SCH 80 | 21.40 | 203,170 | 268,184 |
20 | A106 Gr. B | SCH 80 | 26.20 | 311,290 | 419,095 |
24 | A106 Gr. B | SCH 80 | 31.00 | 442,320 | 604,197 |
26 | A106 Gr. B | SCH 80 | 33.09 | 516,639 | 710,221 |
30 | A106 Gr. B | SCH 80 | 37.66 | 682,619 | 949,128 |
36 | A106 Gr. B | SCH 80 | 44.51 | 975,106 | 1,375,604 |
Dia (″) | Material | SCH | Thickness (mm) | Weight (kg/km) | Cost (USD/km) |
---|---|---|---|---|---|
4 | API 5L X42 | SCH 40 | 5.74 | 13,570 | 15,470 |
10 | API 5L X42 | SCH 40 | 9.82 | 54,969 | 62,665 |
12 | API 5L X42 | SCH 40 | 11.07 | 74,677 | 85,131 |
16 | API 5L X42 | SCH 40 | 12.70 | 123,000 | 172,200 |
20 | API 5L X42 | SCH 40 | 15.10 | 183,000 | 311,100 |
24 | API 5L X52 | SCH 40 | 17.40 | 255,000 | 673,200 |
26 | API 5L X52 | SCH 40 | 17.34 | 295,352 | 861,710 |
30 | API 5L X52 | SCH 40 | 18.35 | 384,991 | 1,353,949 |
36 | API 5L X52 | SCH 40 | 19.10 | 541,609 | 2,497,558 |
Dia (″) | Length (km) | Expected Cost (USD) | Expected Cost (Million Won) |
---|---|---|---|
4 | 1.10 | 163,000 | 179 |
10 | 2.40 | 266,076 | 338 |
12 | 10.50 | 878,257 | 1114 |
16 | 2.80 | 358,262 | 455 |
20 | 1337.60 | 147,797,658 | 187,526 |
24 | 48.40 | 6,454,900 | 8190 |
26 | 374.90 | 54,156,015 | 68,713 |
30 | 3165.79 | 547,350,768 | 694,479 |
36 | 27.50 | 6,229,543 | 7904 |
Total | 4970.99 | 763,654,479 | 968,897 |
Dia (″) | Length (km) | Expected Cost (USD) | Expected Cost (Million Won) |
---|---|---|---|
4 | 1.10 | 546,735 | 601 |
10 | 2.40 | 902,621 | 993 |
12 | 4967.49 | 1,254,713,741 | 1,380,185 |
Total | 4970.99 | 1,256,163,097 | 1,381,779 |
Dia (″) | Length (km) | Expected Cost (USD) | Expected Cost (Million Won) |
---|---|---|---|
4 | 1.10 | 603,704 | 664 |
10 | 2.40 | 985,468 | 1084 |
12 | 10.50 | 3,252,804 | 3578 |
16 | 2.80 | 1,326,896 | 1460 |
20 | 1337.60 | 547,398,735 | 602,139 |
24 | 48.40 | 23,907,037 | 26,298 |
26 | 374.90 | 200,577,832 | 220,636 |
30 | 3165.79 | 2,027,225,067 | 2,229,948 |
36 | 27.50 | 23,072,380 | 25,380 |
Total | 4970.99 | 2,828,349,924 | 3,111,185 |
Year | 36″ | 30″ | 26″ | 24″ | 20″ | 16″ | 12″ | 10″ | 4″ |
---|---|---|---|---|---|---|---|---|---|
2023 | 0.60 | 62.43 | 7.35 | 0.98 | 26.36 | 0.10 | 0.19 | 0.05 | 0.02 |
2024 | 1.27 | 135.68 | 15.98 | 2.12 | 57.29 | 0.21 | 0.42 | 0.11 | 0.05 |
2025 | 1.35 | 142.68 | 16.80 | 2.24 | 60.25 | 0.23 | 0.45 | 0.11 | 0.05 |
2026 | 1.35 | 142.68 | 16.80 | 2.24 | 60.25 | 0.23 | 0.45 | 0.11 | 0.05 |
2027 | 1.35 | 142.68 | 16.80 | 2.24 | 60.25 | 0.23 | 0.45 | 0.11 | 0.05 |
2028 | 1.45 | 154.16 | 18.15 | 2.41 | 65.10 | 0.24 | 0.48 | 0.13 | 0.05 |
2029 | 2.04 | 216.58 | 25.49 | 3.40 | 91.46 | 0.34 | 0.68 | 0.18 | 0.06 |
2030 | 3.48 | 369.46 | 43.50 | 5.79 | 156.03 | 0.58 | 1.16 | 0.29 | 0.11 |
2031 | 3.59 | 381.56 | 44.93 | 5.99 | 161.13 | 0.60 | 1.19 | 0.31 | 0.11 |
2032 | 6.34 | 672.67 | 79.20 | 10.56 | 284.06 | 1.06 | 2.11 | 0.53 | 0.21 |
2033 | 7.85 | 834.47 | 98.25 | 13.10 | 352.38 | 1.30 | 2.62 | 0.66 | 0.26 |
2034 | 7.97 | 845.93 | 99.60 | 13.28 | 357.23 | 1.34 | 2.66 | 0.66 | 0.27 |
2035 | 8.90 | 944.04 | 111.16 | 14.82 | 398.65 | 1.48 | 2.96 | 0.74 | 0.29 |
2036 | 11.73 | 1245.58 | 146.66 | 19.55 | 526.00 | 1.96 | 3.91 | 0.98 | 0.39 |
2037 | 12.39 | 1315.84 | 154.93 | 20.66 | 555.67 | 2.06 | 4.14 | 1.03 | 0.42 |
2038 | 12.81 | 1360.63 | 160.19 | 21.36 | 574.58 | 2.14 | 4.26 | 1.06 | 0.43 |
2039 | 14.66 | 1556.18 | 183.22 | 24.43 | 657.16 | 2.45 | 4.89 | 1.22 | 0.48 |
2040 | 14.61 | 1551.10 | 182.63 | 24.35 | 655.02 | 2.43 | 4.88 | 1.22 | 0.48 |
2041 | 14.71 | 1561.29 | 183.82 | 24.51 | 659.31 | 2.45 | 4.91 | 1.22 | 0.48 |
2042 | 15.06 | 1599.51 | 188.32 | 25.11 | 675.46 | 2.51 | 5.02 | 1.26 | 0.50 |
2043 | 15.13 | 1605.24 | 189.00 | 25.20 | 677.87 | 2.53 | 5.04 | 1.26 | 0.50 |
2044 | 16.32 | 1733.28 | 204.08 | 27.21 | 731.94 | 2.72 | 5.44 | 1.37 | 0.55 |
2045 | 16.43 | 1744.73 | 205.43 | 27.39 | 736.79 | 2.74 | 5.47 | 1.37 | 0.55 |
2046 | 16.66 | 1768.94 | 208.28 | 27.78 | 747.01 | 2.78 | 5.55 | 1.38 | 0.56 |
2047 | 17.27 | 1833.92 | 215.93 | 28.79 | 774.45 | 2.88 | 5.76 | 1.43 | 0.58 |
2048 | 18.14 | 1925.64 | 226.72 | 30.22 | 813.18 | 3.03 | 6.05 | 1.51 | 0.61 |
2049 | 21.36 | 2266.43 | 266.84 | 35.58 | 957.11 | 3.56 | 7.11 | 1.79 | 0.71 |
2050 | 24.40 | 2589.40 | 304.87 | 40.65 | 1093.48 | 4.07 | 8.13 | 2.03 | 0.82 |
2051 | 25.44 | 2700.87 | 318.01 | 42.41 | 1140.56 | 4.23 | 8.48 | 2.12 | 0.85 |
2052 | 26.63 | 2827.64 | 332.92 | 44.39 | 1194.08 | 4.44 | 8.88 | 2.22 | 0.89 |
2053 | 28.03 | 2976.06 | 350.40 | 46.72 | 1256.77 | 4.67 | 9.35 | 2.33 | 0.93 |
2054 | 28.74 | 3051.23 | 359.25 | 47.89 | 1288.50 | 4.80 | 9.58 | 2.40 | 0.97 |
2055 | 29.13 | 3091.99 | 364.05 | 48.54 | 1305.72 | 4.86 | 9.70 | 2.43 | 0.97 |
2056 | 29.45 | 3126.38 | 368.10 | 49.08 | 1320.25 | 4.91 | 9.82 | 2.45 | 0.98 |
Year | Scenario 1 | Scenario 2 | Scenario 3 |
---|---|---|---|
2023 | 17,675 | 31,623 | 65,462 |
2024 | 37,460 | 67,430 | 138,742 |
2025 | 39,353 | 70,856 | 145,751 |
2026 | 39,353 | 70,856 | 145,751 |
2027 | 39,353 | 70,856 | 145,751 |
2028 | 42,450 | 76,460 | 157,221 |
2029 | 59,311 | 106,974 | 219,669 |
2030 | 100,602 | 181,703 | 372,601 |
2031 | 103,871 | 187,619 | 384,708 |
2032 | 182,498 | 329,915 | 675,917 |
2033 | 226,198 | 409,003 | 837,771 |
2034 | 229,295 | 414,608 | 849,241 |
2035 | 255,791 | 462,559 | 947,373 |
2036 | 337,239 | 609,961 | 1,249,032 |
2037 | 356,216 | 644,305 | 1,319,318 |
2038 | 368,311 | 666,195 | 1,364,114 |
2039 | 421,130 | 761,785 | 1,559,740 |
2040 | 419,754 | 759,294 | 1,554,643 |
2041 | 422,506 | 764,276 | 1,564,838 |
2042 | 432,829 | 782,958 | 1,603,071 |
2043 | 434,378 | 785,761 | 1,608,806 |
2044 | 468,959 | 848,346 | 1,736,887 |
2045 | 472,056 | 853,951 | 1,748,357 |
2046 | 478,594 | 865,783 | 1,772,572 |
2047 | 496,143 | 897,542 | 1,837,568 |
2048 | 520,918 | 942,380 | 1,929,327 |
2049 | 612,965 | 1,108,963 | 2,270,240 |
2050 | 700,194 | 1,266,827 | 2,593,310 |
2051 | 730,302 | 1,321,317 | 2,704,823 |
2052 | 764,540 | 1,383,279 | 2,831,630 |
2053 | 804,628 | 1,455,829 | 2,980,102 |
2054 | 824,929 | 1,492,570 | 3,055,293 |
2055 | 835,941 | 1,512,498 | 3,096,076 |
2056 | 845,231 | 1,529,312 | 3,130,485 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Lee, S. Economic Analysis on Hydrogen Pipeline Infrastructure Establishment Scenarios: Case Study of South Korea. Energies 2022, 15, 6824. https://doi.org/10.3390/en15186824
Lee H, Lee S. Economic Analysis on Hydrogen Pipeline Infrastructure Establishment Scenarios: Case Study of South Korea. Energies. 2022; 15(18):6824. https://doi.org/10.3390/en15186824
Chicago/Turabian StyleLee, Heeyeon, and Sanghun Lee. 2022. "Economic Analysis on Hydrogen Pipeline Infrastructure Establishment Scenarios: Case Study of South Korea" Energies 15, no. 18: 6824. https://doi.org/10.3390/en15186824
APA StyleLee, H., & Lee, S. (2022). Economic Analysis on Hydrogen Pipeline Infrastructure Establishment Scenarios: Case Study of South Korea. Energies, 15(18), 6824. https://doi.org/10.3390/en15186824