Real-Time Methane Prediction in Underground Longwall Coal Mining Using AI
Abstract
1. Introduction
2. Materials and Methods
2.1. Spatial and Temporal CFD Modeling
2.2. Data Curation
2.3. The Modified LSTM
3. Results
- CPU: Intel Xeon COU E704830 v3@2.10GHz (4 CPUs/node, 48 cores/node)
- GPU: five Tesla K80
- Memory: 2133 MT/s, Dual Rank, x4 Data Width RDIMM (42.7 GB/Core)
- Storage: 20 TBs
3.1. Training
3.2. Validation
3.3. Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dudley, B. BP Statistical Review of World Energy. BP Stat. Rev. Lond. UK Accessed Aug. 2018, 6, 116. [Google Scholar]
- Peng, S.S. Longwall Mining; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9780429260049. [Google Scholar]
- Qiao, M.; Ren, T.; Roberts, J.; Yang, X.; Li, Z.; Wu, J. New Insight into Proactive Goaf Inertisation for Spontaneous Combustion Management and Control. Process Saf. Environ. Prot. 2022, 161, 739–757. [Google Scholar] [CrossRef]
- Juganda, A. Evaluation of Point-Based Methane Monitoring and Proximity Detection for Methane Explosive Zones in Longwall Faces of Underground Coal Mines; Colorado School of Mines: Golden, CO, USA, 2020. [Google Scholar]
- Juganda, A.; Strebinger, C.; Brune, J.F.; Bogin, G.E. Discrete Modeling of a Longwall Coal Mine Gob for CFD Simulation. Int. J. Min. Sci. Technol. 2020, 30, 463–469. [Google Scholar] [CrossRef]
- Davis, S.G.; Engel, D.; van Wingerden, K. Complex Explosion Development in Mines: Case Study—2010 Upper Big Branch Mine Explosion. Process Saf. Prog. 2015, 34, 286–303. [Google Scholar] [CrossRef]
- Demirkan, D.C.; Duzgun, S.; Juganda, A.; Brune, J.; Bogin, G. Evaluation of Time Series Artificial Intelligence Models for Real-Time/near-Real-Time Methane Prediction in Coal Mines. CIM J. 2022, 1, 1–10. [Google Scholar] [CrossRef]
- Karacan, C.Ö. Modeling and Prediction of Ventilation Methane Emissions of U.S. Longwall Mines Using Supervised Artificial Neural Networks. Int. J. Coal. Geol. 2008, 73, 371–387. [Google Scholar] [CrossRef]
- Dougherty, H.N.; Özgen Karacan, C. A New Methane Control and Prediction Software Suite for Longwall Mines. Comput. Geosci. 2011, 37, 1490–1500. [Google Scholar] [CrossRef]
- Duda, A.; Krzemień, A. Forecast of Methane Emission from Closed Underground Coal Mines Exploited by Longwall Mining—A Case Study of Anna Coal Mine. J. Sustain. Min. 2018, 17, 184–194. [Google Scholar] [CrossRef]
- Sidorenko, A.A.; Dmitriev, P.N.; Sirenko, Y.G. Predicting Methane Emissions from Multiple Gas-Bearing Coal Seams to Longwall Goafs at Russian Mines. ARPN J. Eng. Appl. Sci. 2021, 16, 851–857. [Google Scholar]
- Chen, P.-H.C.; Gadepalli, K.; MacDonald, R.; Liu, Y.; Kadowaki, S.; Nagpal, K.; Kohlberger, T.; Dean, J.; Corrado, G.S.; Hipp, J.D.; et al. An Augmented Reality Microscope with Real-Time Artificial Intelligence Integration for Cancer Diagnosis. Nat. Med. 2019, 25, 1453–1457. [Google Scholar] [CrossRef]
- Nyanteh, Y.; Edrington, C.; Srivastava, S.; Cartes, D. Application of Artificial Intelligence to Real-Time Fault Detection in Permanent-Magnet Synchronous Machines. IEEE Trans. Ind. Appl. 2013, 49, 1205–1214. [Google Scholar] [CrossRef]
- McGovern, A.; Elmore, K.L.; Gagne, D.J.; Haupt, S.E.; Karstens, C.D.; Lagerquist, R.; Smith, T.; Williams, J.K. Using Artificial Intelligence to Improve Real-Time Decision-Making for High-Impact Weather. Bull. Am. Meteorol. Soc. 2017, 98, 2073–2090. [Google Scholar] [CrossRef]
- Imran, M.; Castillo, C.; Lucas, J.; Meier, P.; Vieweg, S. AIDR: Artificial Intelligence for Disaster Response. In Proceedings of the 23rd International Conference on World Wide Web, Seoul, Korea, 7–11 April 2014; Volume 1, pp. 159–162. [Google Scholar] [CrossRef]
- Dong, M.; Wu, H.; Hu, H.; Azzam, R.; Zhang, L.; Zheng, Z.; Gong, X. Deformation Prediction of Unstable Slopes Based on Real-Time Monitoring and Deepar Model. Sensors 2021, 21, 14. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rangel, H.; Morales-Rosales, L.A.; Imperial-Rojo, R.; Roman-Garay, M.A.; Peralta-Peñuñuri, G.E.; Lobato-Báez, M. Analysis of Statistical and Artificial Intelligence Algorithms for Real-Time Speed Estimation Based on Vehicle Detection with YOLO. Appl. Sci. 2022, 12, 2907. [Google Scholar] [CrossRef]
- Wahyono; Harjoko, A.; Dharmawan, A.; Adhinata, F.D.; Kosala, G.; Jo, K.H. Real-Time Forest Fire Detection Framework Based on Artificial Intelligence Using Color Probability Model and Motion Feature Analysis. Fire 2022, 5, 23. [Google Scholar] [CrossRef]
- Bagnall, A.; Lines, J.; Bostrom, A.; Large, J.; Keogh, E. The Great Time Series Classification Bake off: A Review and Experimental Evaluation of Recent Algorithmic Advances. Data Min. Knowl. Discov. 2017, 31, 606–660. [Google Scholar] [CrossRef]
- Lines, J.; Taylor, S.; Bagnall, A. Time Series Classification with HIVE-COTE: The Hierarchical Vote Collective of Transformation-Based Ensembles. ACM Trans. Knowl. Discov. Data 2018, 12, 1. [Google Scholar] [CrossRef]
- Dempster, A.; Petitjean, F.; Webb, G.I. ROCKET: Exceptionally Fast and Accurate Time Series Classification Using Random Convolutional Kernels. Data Min. Knowl. Discov. 2020, 34, 1454–1495. [Google Scholar] [CrossRef]
- Shifaz, A.; Pelletier, C.; Petitjean, F.; Webb, G.I. TS-CHIEF: A Scalable and Accurate Forest Algorithm for Time Series Classification; Springer: Berlin, Germany, 2020; Volume 34, ISBN 1061802000. [Google Scholar]
- Ismail Fawaz, H.; Lucas, B.; Forestier, G.; Pelletier, C.; Schmidt, D.F.; Weber, J.; Webb, G.I.; Idoumghar, L.; Muller, P.A.; Petitjean, F. InceptionTime: Finding AlexNet for Time Series Classification. Data Min. Knowl. Discov. 2020, 34, 1936–1962. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2016, 2016, 770–778. [Google Scholar] [CrossRef]
- Schäfer, P.; Leser, U. Fast and Accurate Time Series Classification with WEASEL. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, 6–10 November 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 637–646. [Google Scholar]
- Lucas, B.; Shifaz, A.; Pelletier, C.; O’Neill, L.; Zaidi, N.; Goethals, B.; Petitjean, F.; Webb, G.I. Proximity Forest: An Effective and Scalable Distance-Based Classifier for Time Series. Data Min. Knowl. Discov. 2019, 33, 607–635. [Google Scholar] [CrossRef]
- Deng, H.; Runger, G.; Tuv, E.; Vladimir, M. A Time Series Forest for Classification and Feature Extraction. Inf. Sci. 2013, 239, 142–153. [Google Scholar] [CrossRef]
- Li, K.; Principe, J.C. Transfer Learning in Adaptive Filters: The Nearest Instance Centroid-Estimation Kernel Least-Mean-Square Algorithm. IEEE Trans. Signal Process. 2017, 65, 6520–6535. [Google Scholar] [CrossRef]
- Alléon, A.; Jauvion, G.; Quennehen, B.; Lissmyr, D. PlumeNet: Large-Scale Air Quality Forecasting Using a Convolutional LSTM Network. arXiv 2020, arXiv:2006.09204. Available online: https://arxiv.org/pdf/2006.09204.pdf (accessed on 3 May 2022).
- Marts, J.A.; Gilmore, R.C.; Brune, J.F.; Bogin, G.E.; Grubb, J.W.; Saki, S. Dynamic Gob Response and Reservoir Properties for Active Longwall Coal Mines. Min. Eng. 2014, 66, 41–48. [Google Scholar]
- Krickovic, S.; Findlay, C. Methane Emission Rate Studies in a Central Pennsylvania Mine. U S Bur Mines, Rep Invest 7591. 1971. Available online: https://www.cdc.gov/NIOSH/mining/UserFiles/works/pdfs/ri7591.pdf (accessed on 29 August 2022).
- Peng, S.S.; Chiang, H.S. Air Velocity Distribution Measurements on Four Mechanized Longwall Coal Faces. Int. J. Min. Geol. Eng. 1986, 4, 235–246. [Google Scholar] [CrossRef]
- Schatzel, S.J.; Krog, R.B.; Dougherty, H. Methane Emissions and Airflow Patterns on a Longwall Face: Potential Influences from Longwall Gob Permeability Distributions on a Bleederless Longwall Panel. Trans. Soc. Min. Met. Explor. Inc 2017, 342, 51–61. [Google Scholar] [CrossRef][Green Version]
- Gangrade, V.; Schatzel, S.J.; Harteis, S.P.; Addis, J.D. Investigating the Impact of Caving on Longwall Mine Ventilation Using Scaled Physical Modeling. Min Met. Explor. 2019, 36, 729–740. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Heathmont, VIC, Australia, 2018; ISBN 0987507117. [Google Scholar]
- Sak, H.; Senior, A.; Beaufays, F. Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition. arXiv 2014, arXiv:1402.1128. Available online: https://arxiv.org/pdf/1402.1128.pdf (accessed on 3 May 2022).
- Olah, C. Understanding LSTM Networks. Available online: https://colah.github.io/posts/2015-08-Understanding-LSTMs/#fn1 (accessed on 6 September 2022).
- Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep Learning for Time Series Classification: A Review. Data Min. Knowl. Discov. 2019, 33, 917–963. [Google Scholar] [CrossRef]
- Graves, A.; Liwicki, M.; Fernández, S.; Bertolami, R.; Bunke, H.; Schmidhuber, J. A Novel Connectionist System for Unconstrained Handwriting Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 855–868. [Google Scholar] [CrossRef] [PubMed]
- Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Networks Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef] [PubMed]
- Calin, O. Recurrent Neural Networks B-Deep Learning Architectures: A Mathematical Approach; Calin, O., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 543–559. ISBN 978-3-030-36721-3. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural. Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Bengio, Y. Learning Long-Term Dependencies with Gradient Descent Is Difficult. IEEE Trans. Neural Netw. 1994, 5, 157–167. [Google Scholar] [CrossRef]
- Gholamy, A.; Kreinovich, V.; Kosheleva, O. Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation. Dep. Tech. Rep. 2018, 1, 1–6. [Google Scholar]
- Gholami, V.; Torkaman, J.; Dalir, P. Simulation of Precipitation Time Series Using Tree-Rings, Earlywood Vessel Features, and Artificial Neural Network. Theor. Appl. Climatol. 2019, 137, 1939–1948. [Google Scholar] [CrossRef]
- Dubbs, A. Test Set Sizing Via Random Matrix Theory. arXiv 2021, arXiv:2112.05977. Available online: https://arxiv.org/pdf/2112.05977.pdf (accessed on 29 August 2022).
- Joseph, V.R. Optimal Ratio for Data Splitting. Stat. Anal. Data Min. 2022, 531–538. [Google Scholar] [CrossRef]
- Guyon, I. A Scaling Law for the Validation-Set Training-Set Size Ratio. ATT Bell Lab. 1997, 1, 1–11. [Google Scholar]
Training DataSet | Validation DataSet | Cutting Direction | Testing DataSet | Cutting Direction |
---|---|---|---|---|
80% of Location 1 | 20% of Location 1 | Headgate to Tailgate | Location 6 | Tailgate to Headgate |
80% of Location 2 | 20% of Location 2 | Headgate to Tailgate | Location 5 | Tailgate to Headgate |
80% of Location 3 | 20% of Location 3 | Headgate to Tailgate | Location 4 | Tailgate to Headgate |
80% of Location 4 | 20% of Location 4 | Tailgate to Headgate | Location 3 | Headgate to Tailgate |
80% of Location 5 | 20% of Location 5 | Tailgate to Headgate | Location 2 | Headgate to Tailgate |
80% of Location 6 | 20% of Location 6 | Tailgate to Headgate | Location 1 | Headgate to Tailgate |
Couple Name | Training DataSet | Testing DataSet | Overall Accuracy |
---|---|---|---|
L1L6 | Location 1 | Location 6 | 92.4% |
L2L5 | Location 2 | Location 5 | 89.1% |
L3L4 | Location 3 | Location 4 | 87.9% |
L4L3 | Location 4 | Location 3 | 88.3% |
L5L2 | Location 5 | Location 2 | 91.0% |
L6L1 | Location 6 | Location 1 | 91.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demirkan, D.C.; Duzgun, H.S.; Juganda, A.; Brune, J.; Bogin, G. Real-Time Methane Prediction in Underground Longwall Coal Mining Using AI. Energies 2022, 15, 6486. https://doi.org/10.3390/en15176486
Demirkan DC, Duzgun HS, Juganda A, Brune J, Bogin G. Real-Time Methane Prediction in Underground Longwall Coal Mining Using AI. Energies. 2022; 15(17):6486. https://doi.org/10.3390/en15176486
Chicago/Turabian StyleDemirkan, Doga Cagdas, H. Sebnem Duzgun, Aditya Juganda, Jurgen Brune, and Gregory Bogin. 2022. "Real-Time Methane Prediction in Underground Longwall Coal Mining Using AI" Energies 15, no. 17: 6486. https://doi.org/10.3390/en15176486
APA StyleDemirkan, D. C., Duzgun, H. S., Juganda, A., Brune, J., & Bogin, G. (2022). Real-Time Methane Prediction in Underground Longwall Coal Mining Using AI. Energies, 15(17), 6486. https://doi.org/10.3390/en15176486