Non-Stoichiometric Redox Thermochemical Energy Storage Analysis for High Temperature Applications
Abstract
:1. Introduction
2. Methodology
2.1. Reference Process of Concentrated Solar Thermal Powered High-Temperature Electrolysis
2.2. Packed Bed Thermal Energy Storage Model
- No significant radial effects (1D model is sufficient).
- Particle behavior can be described as a continuum.
- Gases can be considered ideal.
- Solid phase thermophysical properties are constant.
- Change of species in the gaseous phase is neglected.
- The reaction rate is not limiting (reaction takes place instantaneously).
- Axial plug flow.
2.3. Boundary Conditions and Numerical Discretization
2.4. Model Verification
2.5. Inert and Redox Material Specific Properties
2.5.1. Redox Thermodynamics
2.5.2. Solid Filler Material Properties
2.6. Thermal Energy Storage Analysis
2.6.1. Operational Constraints
2.6.2. Parametric Study
2.7. Evaluation Method
3. Results and Discussion
3.1. Thermocline Behavior and Storage Capacity Analysis
3.2. Analysis of the Reactive Material
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ram, M.; Galimova, T.; Bogdanov, D.; Fasihi, M.; Gulagi, A.; Breyer, C.; Micheli, M.; Crone, K. Powerfuels in a Renewable Energy World. Global Volumes, Costs, and Trading 2030 to 2050; Lappeenranta: Berlin, Germany, 2020. [Google Scholar]
- IEA/International Energy Agency. Achieving Net Zero Heavy Industry Sectors in G7 Members; OECD: Paris, France, 2022. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Reaching zero with Renewables: Biojet Fuels; IRENA: Abu Dhabi, United Arab Emirates, 2021. [Google Scholar]
- Gandía, L.M.; Arzamedi, G.; Diéguez, P.M. (Eds.) Renewable Hydrogen Technologies. Production, Purification, Storage, Applications and Safety; Elsevier: Amsterdam, The Netherland, 2013. [Google Scholar]
- Sanz-Bermejo, J.; Muñoz-Antón, J.; Gonzalez-Aguilar, J.; Romero, M. Optimal integration of a solid-oxide electrolyser cell into a direct steam generation solar tower plant for zero-emission hydrogen production. Appl. Energy 2014, 131, 238–247. [Google Scholar] [CrossRef]
- Roeb, M.; Monnerie, N.; Houaijia, A.; Sattler, C.; Sanz-Bermejo, J.; Romero, M.; Canadas, I.; Castro, A.D.; Lucero, C.; Palomino, R.; et al. Coupling Heat and Electricity Sources to Intermediate Temperature Steam Electrolysis. J. Energy Power Eng. 2013, 7, 2068–2077. [Google Scholar]
- Lin, M.; Haussener, S. Techno-economic modeling and optimization of solar-driven high-temperature electrolysis systems. Sol. Energy 2017, 155, 1389–1402. [Google Scholar] [CrossRef]
- Grube, T.; Reul, J.; Reuß, M.; Calnan, S.; Monnerie, N.; Schlatmann, R.; Sattler, C.; Robinius, M.; Stolten, D. A techno-economic perspective on solar-to-hydrogen concepts through 2025. Sustain. Energy Fuels 2020, 4, 5818–5834. [Google Scholar] [CrossRef]
- Seitz, M.; von Storch, H.; Nechache, A.; Bauer, D. Techno economic design of a solid oxide electrolysis system with solar thermal steam supply and thermal energy storage for the generation of renewable hydrogen. Int. J. Hydrogen Energy 2017, 42, 26192–26202. [Google Scholar] [CrossRef]
- Monnerie, N.; von Storch, H.; Houaijia, A.; Roeb, M.; Sattler, C. Hydrogen production by coupling pressurized high temperature electrolyser with solar tower technology. Int. J. Hydrogen Energy 2017, 42, 13498–13509. [Google Scholar] [CrossRef]
- Houaijia, A.; Roeb, M.; Monnerie, N.; Sattler, C. Solar power tower as heat and electricity source for a solid oxide electrolyzer: A case study. Int. J. Energy Res. 2015, 39, 1120–1130. [Google Scholar] [CrossRef]
- Puig-Samper, G.; Bargiacchi, E.; Iribarren, D.; Dufour, J. Assessing the prospective environmental performance of hydrogen from high-temperature electrolysis coupled with concentrated solar power. Renew. Energy 2022, 196, 1258–1268. [Google Scholar] [CrossRef]
- Petipas, F.; Brisse, A.; Bouallou, C. Benefits of external heat sources for high temperature electrolyser systems. Int. J. Hydrogen Energy 2014, 39, 5505–5513. [Google Scholar] [CrossRef]
- Rosenstiel, A.; Monnerie, N.; Dersch, J.; Roeb, M.; Pitz-Paal, R.; Sattler, C. Electrochemical Hydrogen Production Powered by PV/CSP Hybrid Power Plants: A Modelling Approach for Cost Optimal System Design. Energies 2021, 14, 3437. [Google Scholar] [CrossRef]
- Godula-Jopek, A.; Stolten, D. Hydrogen Production: By Electrolysis; John Wiley & Sons, Incorporated: Berlin, Germany, 2015. [Google Scholar]
- Heddrich, M.P.; Gupta, S.; Santhanam, S. Electrochemical Ceramic Membrane Reactors in Future Energy and Chemical Process Engineering. Chem. Ing. Tech. 2019, 91, 809–820. [Google Scholar] [CrossRef]
- Lang, M.; Raab, S.; Lemcke, M.S.; Bohn, C.; Pysik, M. Long-Term Behavior of a Solid Oxide Electrolyzer (SOEC) Stack. Fuel Cells 2020, 20, 690–700. [Google Scholar] [CrossRef]
- Chapman, A.; Ertekin, E.; Kubota, M.; Nagao, A.; Bertsch, K.; Macadre, A.; Tsuchiyama, T.; Masamura, T.; Takaki, S.; Komoda, R.; et al. Achieving a Carbon Neutral Future through Advanced Functional Materials and Technologies. BCSJ 2022, 95, 73–103. [Google Scholar] [CrossRef]
- Xie, B.; Baudin, N.; Soto, J.; Fan, Y.; Luo, L. Thermocline packed bed thermal energy storage system. In Renewable Energy Production and Distribution; Elsevier: Amsterdam, The Netherlands, 2022; pp. 325–385. [Google Scholar] [CrossRef]
- Cabeza, L.F. Advances in Thermal Energy Storage Systems: Methods and Applications; Elsevier Science & Technology: Cambridge, UK, 2014. [Google Scholar]
- Buck, R.; Schwarzbözl, P. 4.17 Solar Tower Systems. In Comprehensive Energy Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 692–732. [Google Scholar] [CrossRef]
- Esence, T.; Bruch, A.; Molina, S.; Stutz, B.; Fourmigué, J.-F. A review on experience feedback and numerical modeling of packed-bed thermal energy storage systems. Sol. Energy 2017, 153, 628–654. [Google Scholar] [CrossRef]
- Cascetta, M.; Cau, G.; Puddu, P.; Serra, F. Numerical Investigation of a Packed Bed Thermal Energy Storage System with Different Heat Transfer Fluids. Energy Procedia 2014, 45, 598–607. [Google Scholar] [CrossRef]
- Ortega-Fernández, I.; Uriz, I.; Ortuondo, A.; Hernández, A.B.; Faik, A.; Loroño, I.; Rodríguez-Aseguinolaza, J. Operation strategies guideline for packed bed thermal energy storage systems. Int. J. Energy Res. 2019, 43, 6211–6221. [Google Scholar] [CrossRef]
- Galione, P.A.; Pérez-Segarra, C.D.; Rodríguez, I.; Lehmkuhl, O.; Rigola, J. A New Thermocline-PCM Thermal Storage Concept for CSP Plants. Numerical Analysis and Perspectives. Energy Procedia 2014, 49, 790–799. [Google Scholar] [CrossRef]
- Galione, P.A.; Pérez-Segarra, C.D.; Rodríguez, I.; Oliva, A.; Rigola, J. Multi-layered solid-PCM thermocline thermal storage concept for CSP plants. Numerical analysis and perspectives. Appl. Energy 2015, 142, 337–351. [Google Scholar] [CrossRef]
- Galione, P.A.; Pérez-Segarra, C.D.; Rodríguez, I.; Torras, S.; Rigola, J. Multi-layered solid-PCM thermocline thermal storage for CSP. Numerical evaluation of its application in a 50 MWe plant. Sol. Energy 2015, 119, 134–150. [Google Scholar] [CrossRef]
- Geissbühler, L.; Kolman, M.; Zanganeh, G.; Haselbacher, A.; Steinfeld, A. Analysis of industrial-scale high-temperature combined sensible/latent thermal energy storage. Appl. Therm. Eng. 2016, 101, 657–668. [Google Scholar] [CrossRef]
- Zanganeh, G.; Khanna, R.; Walser, C.; Pedretti, A.; Haselbacher, A.; Steinfeld, A. Experimental and numerical investigation of combined sensible–latent heat for thermal energy storage at 575 °C and above. Sol. Energy 2015, 114, 77–90. [Google Scholar] [CrossRef]
- Cascetta, M.; Petrollese, M.; Oyekale, J.; Cau, G. Thermocline vs. two-tank direct thermal storage system for concentrating solar power plants: A comparative techno-economic assessment. Int. J. Energy Res. 2021, 45, 17721–17737. [Google Scholar] [CrossRef]
- Geissbühler, L.; Mathur, A.; Mularczyk, A.; Haselbacher, A. An assessment of thermocline-control methods for packed-bed thermal-energy storage in CSP plants, Part 1: Method descriptions. Sol. Energy 2019, 178, 341–350. [Google Scholar] [CrossRef]
- Geissbühler, L.; Mathur, A.; Mularczyk, A.; Haselbacher, A. An assessment of thermocline-control methods for packed-bed thermal-energy storage in CSP plants, Part 2: Assessment strategy and results. Sol. Energy 2019, 178, 351–364. [Google Scholar] [CrossRef]
- McTigue, J.D.; Markides, C.N.; White, A.J. Performance response of packed-bed thermal storage to cycle duration perturbations. J. Energy Storage 2018, 19, 379–392. [Google Scholar] [CrossRef]
- Cascetta, M.; Serra, F.; Arena, S.; Casti, E.; Cau, G.; Puddu, P. Experimental and Numerical Research Activity on a Packed Bed TES System. Energies 2016, 9, 758. [Google Scholar] [CrossRef]
- Pardo, P.; Deydier, A.; Anxionnaz-Minvielle, Z.; Rougé, S.; Cabassud, M.; Cognet, P. A review on high temperature thermochemical heat energy storage. Renew. Sustain. Energy Rev. 2014, 32, 591–610. [Google Scholar] [CrossRef]
- Carrillo, A.J.; González-Aguilar, J.; Romero, M.; Coronado, J.M. Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials. Chem. Rev. 2019, 119, 4777–4816. [Google Scholar] [CrossRef]
- Bulfin, B.; Vieten, J.; Agrafiotis, C.; Roeb, M.; Sattler, C. Applications and limitations of two step metal oxide thermochemical redox cycles; a review. J. Mater. Chem. A 2017, 5, 18951–18966. [Google Scholar] [CrossRef]
- Vieten, J.; Gubán, D.; Roeb, M.; Lachmann, B.; Richter, S.; Sattler, C. Ammonia and nitrogen-based fertilizer production by solar-thermochemical processes. In Proceedings of the SOLARPACES 2019: International Conference on Concentrating Solar Power and Chemical Energy Systems, Daegu, South Korea, 1–4 October 2019; AIP Publishing: New York, NY, USA, 2020; p. 170016. [Google Scholar]
- Romero, M.; Steinfeld, A. Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. 2012, 5, 9234. [Google Scholar] [CrossRef]
- Agrafiotis, C.; Roeb, M.; Sattler, C. Hybrid Sensible/Thermochemical Solar Energy Storage Concepts Based on Porous Ceramic Structures and Redox Pair Oxides Chemistry. Energy Procedia 2015, 69, 706–715. [Google Scholar] [CrossRef]
- Carrillo, A.J.; Serrano, D.P.; Pizarro, P.; Coronado, J.M. Improving the Thermochemical Energy Storage Performance of the Mn2O3/Mn3O4 Redox Couple by the Incorporation of Iron. ChemSusChem 2015, 8, 1947–1954. [Google Scholar] [CrossRef] [PubMed]
- André, L.; Abanades, S.; Cassayre, L. Experimental Investigation of Co–Cu, Mn–Co, and Mn–Cu Redox Materials Applied to Solar Thermochemical Energy Storage. ACS Appl. Energy Mater. 2018, 1, 3385–3395. [Google Scholar] [CrossRef]
- Tescari, S.; Singh, A.; de Oliveira, L.; Breuer, S.; Agrafiotis, C.; Roeb, M.; Sattler, C.; Marcher, J.; Pagkoura, C.; Karagiannakis, G.; et al. Experimental proof of concept of a pilot-scale thermochemical storage unit. AIP Conf. Proc. 2017, 1850, 90006. [Google Scholar] [CrossRef]
- Staff, P. Thermochemical Heat Storage for Concentrated Solar Power; Thermochemical System Reactor Design for Thermal Energy Stroage; OSTI: Oak Ridge, TN, USA, 2011. [Google Scholar] [CrossRef]
- Agrafiotis, C.; Pein, M.; Giasafaki, D.; Tescari, S.; Roeb, M.; Sattler, C. Redox Oxides-Based Solar Thermochemistry and Its Materialization to Reactor/Heat Exchanger Concepts for Efficient Solar Energy Harvesting, Transformation and Storage. J. Sol. Energy Eng. 2019, 141, 021010. [Google Scholar] [CrossRef]
- Jackson, G.S.; Imponenti, L.; Albrecht, K.J.; Miller, D.C.; Braun, R.J. Inert and Reactive Oxide Particles for High-Temperature Thermal Energy Capture and Storage for Concentrating Solar Power. J. Sol. Energy Eng. 2019, 141, 021016. [Google Scholar] [CrossRef]
- Albrecht, K.J.; Jackson, G.S.; Braun, R.J. Evaluating thermodynamic performance limits of thermochemical energy storage subsystems using reactive perovskite oxide particles for concentrating solar power. Sol. Energy 2018, 167, 179–193. [Google Scholar] [CrossRef]
- Buck, R.; Agrafiotis, C.; Tescari, S.; Neumann, N.; Schmücker, M. Techno-Economic Analysis of Candidate Oxide Materials for Thermochemical Storage in Concentrating Solar Power Systems. Front. Energy Res. 2021, 9, 694248. [Google Scholar] [CrossRef]
- Tescari, S.; Neumann, N.C.; Sundarraj, P.; Moumin, G.; Rincon Duarte, J.P.; Linder, M.; Roeb, M. Storing solar energy in continuously moving redox particles—Experimental analysis of charging and discharging reactors. Appl. Energy 2022, 308, 118271. [Google Scholar] [CrossRef]
- Mastronardo, E.; Qian, X.; Coronado, J.M.; Haile, S.M. The favourable thermodynamic properties of Fe-doped CaMnO3 for thermochemical heat storage. J. Mater. Chem. A 2020, 8, 8503–8517. [Google Scholar] [CrossRef]
- Vieten, J.; Bulfin, B.; Senholdt, M.; Roeb, M.; Sattler, C.; Schmücker, M. Redox thermodynamics and phase composition in the system SrFeO3−δ—SrMnO3−δ. Solid State Ion. 2017, 308, 149–155. [Google Scholar] [CrossRef]
- Bulfin, B.; Vieten, J.; Starr, D.E.; Azarpira, A.; Zachäus, C.; Hävecker, M.; Skorupska, K.; Schmücker, M.; Roeb, M.; Sattler, C. Redox chemistry of CaMnO3 and Ca0.8Sr0.2MnO3 oxygen storage perovskites. J. Mater. Chem. A 2017, 5, 7912–7919. [Google Scholar] [CrossRef]
- Pein, M.; Agrafiotis, C.; Vieten, J.; Giasafaki, D.; Brendelberger, S.; Roeb, M.; Sattler, C. Redox thermochemistry of Ca-Mn-based perovskites for oxygen atmosphere control in solar-thermochemical processes. Sol. Energy 2020, 198, 612–622. [Google Scholar] [CrossRef]
- Imponenti, L.; Albrecht, K.J.; Braun, R.J.; Jackson, G.S. Measuring Thermochemical Energy Storage Capacity with Redox Cycles of Doped-CaMnO3. ECS Trans. 2016, 72, 11–22. [Google Scholar] [CrossRef]
- Bulfin, B.; Hoffmann, L.; de Oliveira, L.; Knoblauch, N.; Call, F.; Roeb, M.; Sattler, C.; Schmücker, M. Statistical thermodynamics of non-stoichiometric ceria and ceria zirconia solid solutions. Phys. Chem. Chem. Phys. PCCP 2016, 18, 23147–23154. [Google Scholar] [CrossRef]
- Reisert, M.; Aphale, A.; Singh, P. Solid Oxide Electrochemical Systems: Material Degradation Processes and Novel Mitigation Approaches. Materials 2018, 11, 2169. [Google Scholar] [CrossRef]
- Lin, M.; Reinhold, J.; Monnerie, N.; Haussener, S. Modeling and design guidelines for direct steam generation solar receivers. Appl. Energy 2018, 216, 761–776. [Google Scholar] [CrossRef]
- Schiller, G.; Lang, M.; Szabo, P.; Monnerie, N.; von Storch, H.; Reinhold, J.; Sundarraj, P. Solar heat integrated solid oxide steam electrolysis for highly efficient hydrogen production. J. Power Sources 2019, 416, 72–78. [Google Scholar] [CrossRef]
- Houaijia, A.; Breuer, S.; Thomey, D.; Brosig, C.; Säck, J.-P.; Roeb, M.; Sattler, C. Solar Hydrogen by High-temperature Electrolysis: Flowsheeting and Experimental Analysis of a Tube-type Receiver Concept for Superheated Steam Production. Energy Procedia 2014, 49, 1960–1969. [Google Scholar] [CrossRef]
- Schumann, T. Heat transfer: A liquid flowing through a porous prism. J. Frankl. Inst. 1929, 208, 405–416. [Google Scholar] [CrossRef]
- Zanganeh, G.; Pedretti, A.; Zavattoni, S.; Barbato, M.; Steinfeld, A. Packed-bed thermal storage for concentrated solar power—Pilot-scale demonstration and industrial-scale design. Sol. Energy 2012, 86, 3084–3098. [Google Scholar] [CrossRef]
- Agalit, H.; Zari, N.; Maalmi, M.; Maaroufi, M. Numerical investigations of high temperature packed bed TES systems used in hybrid solar tower power plants. Sol. Energy 2015, 122, 603–616. [Google Scholar] [CrossRef]
- Wakao, N.; Kaguei, S.; Funazkri, T. Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds. Chem. Eng. Sci. 1979, 34, 325–336. [Google Scholar] [CrossRef]
- VDI, e.V. VDI-Wärmeatlas; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- van Antwerpen, W.; Du Toit, C.G.; Rousseau, P.G. A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles. Nucl. Eng. Des. 2010, 240, 1803–1818. [Google Scholar] [CrossRef]
- Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog. 1952, 48, 89–94. [Google Scholar]
- Meier, A.; Winkler, C.; Wuillemin, D. Experiment for modelling high temperature rock bed storage. Sol. Energy Mater. 1991, 24, 255–264. [Google Scholar] [CrossRef]
- Hänchen, M.; Brückner, S.; Steinfeld, A. High-temperature thermal storage using a packed bed of rocks—Heat transfer analysis and experimental validation. Appl. Therm. Eng. 2011, 31, 1798–1806. [Google Scholar] [CrossRef]
- Trevisan, S.; Jemmal, Y.; Guedez, R.; Laumert, B. Packed bed thermal energy storage: A novel design methodology including quasi-dynamic boundary conditions and techno-economic optimization. J. Energy Storage 2021, 36, 102441. [Google Scholar] [CrossRef]
- Coutier, J.; Farber, E.A. Two applications of a numerical approach of heat transfer process within rock beds. Sol. Energy 1982, 29, 451–462. [Google Scholar] [CrossRef]
- Brendelberger, S.; Vieten, J.; Roeb, M.; Sattler, C. Thermochemical oxygen pumping for improved hydrogen production in solar redox cycles. Int. J. Hydrogen Energy 2019, 44, 9802–9810. [Google Scholar] [CrossRef]
- Albrecht, K.J.; Jackson, G.S.; Braun, R.J. Thermodynamically consistent modeling of redox-stable perovskite oxides for thermochemical energy conversion and storage. Appl. Energy 2016, 165, 285–296. [Google Scholar] [CrossRef]
- The Materials Project. Materials Data on SrFeO3 by Materials Project; The Materials Project: Berkeley, CA, USA, 2020. [Google Scholar] [CrossRef]
- The Materials Project. Materials Data on CaMnO3 by Materials Project; The Materials Project: Berkeley, CA, USA, 2020. [Google Scholar] [CrossRef]
- Bulfin, B.; Lapp, J.; Richter, S.; Gubàn, D.; Vieten, J.; Brendelberger, S.; Roeb, M.; Sattler, C. Air separation and selective oxygen pumping via temperature and pressure swing oxygen adsorption using a redox cycle of SrFeO3 perovskite. Chem. Eng. Sci. 2019, 203, 68–75. [Google Scholar] [CrossRef]
- Vieten, J.; Bulfin, B.; Huck, P.; Horton, M.; Guban, D.; Zhu, L.; Lu, Y.; Persson, K.A.; Roeb, M.; Sattler, C. Materials design of perovskite solid solutions for thermochemical applications. Energy Environ. Sci. 2019, 12, 1369–1384. [Google Scholar] [CrossRef]
Parameter | Unit | SrFeO3−δ | CaMnO3−δ | Ca0.8Sr0.2MnO3−δ | Bauxite |
---|---|---|---|---|---|
ρ | kg/m3 | 5310 [73] | 4360 [74] | 4530 [46] 1 | 3300 [46] |
cp | kJ/kg K | 0.86 [46] 1 | 0.86 [46] 1 | 0.86 [46] 1 | 1.19 [46] |
cv = ρ cp | kJ/m3 K | 4566 | 3750 | 3896 | 3927 |
Δho | kJ/molO2 | 100 [51] 2 | 161 [52] | 148 [52] | - |
Δsth | J/molO2 K | 105 [51] 2 | 94 [52] | 85 [52] | - |
a | - | 2.2 [51] 2 | 0.88 [52] | 1.1 [52] | - |
Parameter | Unit | Value |
---|---|---|
L | m | 14 |
D | m | 14 |
Tc | °C | 850 |
Td | °C | 450 |
kg/h | 500,000 | |
kg/h | 240,000 | |
tcmax | h | 9 |
tdmax | h | 24—tcend |
dt | s | 10 |
nz | - | 120 |
- | 0.4 | |
θhot | - | 0.875 |
θcold | - | 0.2 |
ε | - | 0.85 |
λs | W/m K | 2.5 |
dp | m | 0.02 |
pO2 | bar | 0.18 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roeder, T.; Risthaus, K.; Monnerie, N.; Sattler, C. Non-Stoichiometric Redox Thermochemical Energy Storage Analysis for High Temperature Applications. Energies 2022, 15, 5982. https://doi.org/10.3390/en15165982
Roeder T, Risthaus K, Monnerie N, Sattler C. Non-Stoichiometric Redox Thermochemical Energy Storage Analysis for High Temperature Applications. Energies. 2022; 15(16):5982. https://doi.org/10.3390/en15165982
Chicago/Turabian StyleRoeder, Timo, Kai Risthaus, Nathalie Monnerie, and Christian Sattler. 2022. "Non-Stoichiometric Redox Thermochemical Energy Storage Analysis for High Temperature Applications" Energies 15, no. 16: 5982. https://doi.org/10.3390/en15165982
APA StyleRoeder, T., Risthaus, K., Monnerie, N., & Sattler, C. (2022). Non-Stoichiometric Redox Thermochemical Energy Storage Analysis for High Temperature Applications. Energies, 15(16), 5982. https://doi.org/10.3390/en15165982