In-Situ LID and Regeneration of Al-BSF Solar Cells from Different Positions of a B-Doped Cz-Si Ingot
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
3.1. Impurity Concentrations of Silicon Wafers
3.2. In-Situ LID and Regeneration of the Al-BSF Solar Cells
3.3. Measurements of Al-BSF Solar Cells at Four Time Nodes
3.4. Uncertainty Illustration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
LID | light induced degradation |
BO-LID | B-O defects related light induced degradation |
Al-BSF | aluminium back-surface-field |
PERC | passivated emitter and rear cell |
Cz-Si | Czochralski silicon |
Mono-Si | monocrystalline silicon |
RTP | rapid thermal processing |
LeTID | light- and elevated temperature-induced degradation |
ICP-MS | Inductively Coupled Plasma-Mass Spectrometry |
FT-IR | Fourier transform infrared |
PSG | phosphor silicate glass |
PECVD | Plasma Enhanced Chemical Vapor Deposition |
LBIC | light-beam induced current |
EQE | external quantum efficiency |
PDG | phosphorus diffusion gettering |
η | [%] efficiency |
Isc | [A] short-circuit current |
Voc | [V] open-circuit voltage |
FF | [%] fill factor |
τ | [μs] minority carrier lifetime |
Δn | [cm−3] excess carrier injection level |
ΔnCOP | [cm−3] crossover-point carrier concentration |
LD | [μm] minority carrier diffusion length |
LA | [μm] average minority carrier diffusion lengths |
J01 | [A/cm2] bulk region dark saturation current density |
J02 | [A/cm2] space charge region dark saturation current density |
References
- Niewelt, T.; Schon, J.; Warta, W.; Glunz, S.W.; Schubert, M.C. Degradation of Crystalline Silicon Due to Boron–Oxygen Defects. IEEE J. Photovolt. 2017, 7, 383–398. [Google Scholar] [CrossRef]
- Lindroos, J.; Savin, H. Review of light-induced degradation in crystalline silicon solar cells. Sol. Energy Mater. Sol. C 2016, 147, 115–126. [Google Scholar] [CrossRef]
- Hallam, B.; Herguth, A.; Hamer, P.; Nampalli, N.; Wilking, S.; Abbott, M.; Wenham, S.; Hahn, G. Eliminating Light-Induced Degradation in Commercial p-Type Czochralski Silicon Solar Cells. Appl. Sci. 2018, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.; Bothe, K.; Macdonald, D.; Adey, J.; Jones, R.; Palmer, D.W. Electronically stimulated degradation of silicon solar cells. J. Mater. Res. 2006, 21, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J. Effect of dissociation of iron-boron pairs in crystalline silicon on solar cell properties. Prog. Photovolt. 2005, 13, 325–331. [Google Scholar] [CrossRef]
- Boulfrad, Y.; Lindroos, J.; Wagner, M.; Wolny, F.; Yli-Koski, M.; Savin, H. Experimental evidence on removing copper and light-induced degradation from silicon by negative charge. Appl. Phys. Lett. 2014, 105, 182108. [Google Scholar] [CrossRef] [Green Version]
- Herguth, A.; Schubert, G.; Kaes, M.; Hahn, G. Avoiding boron-oxygen related degradation in highly boron doped Cz silicon. In Proceedings of the 21st European Photovoltaic Solar Energy Conference (EUPVSEC), Dresden, Germany, 4–8 September 2006; pp. 530–537. [Google Scholar]
- Wilking, S.; Engelhardt, J.; Ebert, S.; Beckh, C.; Herguth, A.; Hahn, G. High Speed Regeneration of BO-Defects: Improving Long-Term Solar Cell Performance within Seconds. In Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition (EUPVSEC), Amsterdam, The Netherlands, 22–26 September 2014; pp. 366–437. [Google Scholar]
- Basnyat, P.; Sopori, B.; Devayajanam, S.; Shet, S.; Binns, J.; Appel, J.; Ravindra, N.M. Experimental study to separate surface and bulk contributions of light-induced degradation in crystalline silicon solar cells. Emerg. Mater. Res. 2015, 4, 239–246. [Google Scholar] [CrossRef]
- Herguth, A.; Wilking, S.; Horbelt, R.; Ebert, S.; Beckh, C.; Friedrich, D.; Hahn, G. Accelerating boron-oxygen related regeneration: Lessons learned from the BORNEO project. In Proceedings of the 31st European Photovoltaic Solar Energy Conference 2015 (EUPVSEC), Hamburg, Germany, 14–18 September 2015; pp. 804–810. [Google Scholar]
- Ebong, A.; Chen, N.; Chowdhury, A.; Unsur, V. The impact of rapid thermal processing (RTP) on crystalline silicon solar cell performance and light induced degradation (LID). In Proceedings of the IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015; pp. 1–4. [Google Scholar]
- Padmanabhan, M.; Jhaveri, K.; Sharma, R.; Kanti Basu, P.; Raj, S.; Wong, J.; Li, J. Light-induced degradation and regeneration of multicrystalline silicon Al-BSF and PERC solar cells. Phys. Status Solidi Rapid Res. Lett. 2016, 10, 874–881. [Google Scholar] [CrossRef]
- Cho, E.; Rohatgi, A.; Ok, Y. Comparison of light-induced degradation and regeneration in P-type monocrystalline full aluminum back surface field and passivated emitter rear cells. Curr. Appl. Phys. 2018, 18, 1600–1604. [Google Scholar] [CrossRef]
- Varshney, U.; Li, W.; Li, X.; Chan, C.; Hoex, B. Impact of wafer properties and production processes on the degradation in industrial PERC solar cells. In Proceedings of the 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 15 June–21 August 2020; pp. 0803–0806. [Google Scholar]
- Sinha, A.; Qian, J.; Hurst, K.; Moffitt, S.L.; Schelhas, L.T.; Miller, D.C.; Hacke, P. UV-Induced Degradation of High-Efficiency Solar Cells with Different Architectures. In Proceedings of the 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 15 June–21 August 2020; pp. 1990–1991. [Google Scholar]
- Yuan, S.; Ding, S.; Ai, B.; Chen, D.; Jin, J.; Ye, J.; Qiu, D.; Sun, X.; Liang, X. In Situ LID and Regeneration of PERC Solar Cells from Different Positions of a B-Doped Cz-Si Ingot. Int. J. Photoenergy 2022, 2022, 6643133. [Google Scholar] [CrossRef]
- Wagner, M.; Wolny, F.; Hentsche, M.; Krause, A.; Sylla, L.; Kropfgans, F.; Ernst, M.; Zierer, R.; Bonisch, P.; Muller, P.; et al. Correlation of the LeTID amplitude to the Aluminium bulk concentration and Oxygen precipitation in PERC solar cells. Sol. Energy Mater. Sol. C 2018, 187, 176–188. [Google Scholar] [CrossRef]
- Shabani, M.B.; Yamashita, T.; Morita, E. Metallic Impurities in Mono and Multi-crystalline Silicon and Their Gettering by Phosphorus Diffusion. ECS Trans. 2008, 16, 179–193. [Google Scholar] [CrossRef]
- Miyamura, Y.; Harada, H.; Nakano, S.; Nishizawa, S.; Kakimoto, K. Relationship between carbon concentration and carrier lifetime in CZ-Si crystals. J. Cryst. Growth 2018, 486, 56–59. [Google Scholar] [CrossRef]
- Hallam, B.; Abbott, M.; Nampalli, N.; Hammer, P.; Wenham, S. Influence of the formation- and passivation rate of boron-oxygen defects for mitigating carrier-induced degradation in silicon within a hydrogen-based model. J. Appl. Phys. 2016, 119, 065701. [Google Scholar] [CrossRef]
- Yakimov, E.B. Metal Impurities and Gettering in Crystalline Silicon. In Handbook of Photovoltaic Silicon; Springer: Berlin/Heidelberg, Germany, 2019; pp. 495–540. ISBN 978-3-662-56471-4. [Google Scholar]
- Shabani, M.B.; Yamashita, T.; Morita, E. Study of Gettering Mechanisms in Silicon: Competitive Gettering between Phosphorus Diffusion Gettering and Other Gettering Sites. Solid State Phenom. 2007, 131–133, 399–404. [Google Scholar] [CrossRef]
- Weber, E.R. Transition metals in silicon. Appl. Phys. A 1983, A30, 1–22. [Google Scholar] [CrossRef]
- Herguth, A. Application of the Concept of Lifetime-Equivalent Defect Density in Defect Systems Comprising a Multitude of Defect Species. Phys. Status Solidi A 2019, 216, 1900322. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, R.; Chen, X.; Zeng, G.; Kobera, L.; Abbrent, S.; Zhang, B.; Chen, W.; Xu, G.; Oh, J.; et al. A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents. Nat. Energy 2021, 6, 1045–1053. [Google Scholar] [CrossRef]
Group | Resistivity (Ω∙cm) | B (cm−3) | O (cm−3) | C (cm−3) | Fe (cm−3) | Cu (cm−3) | Ni (cm−3) |
---|---|---|---|---|---|---|---|
1 | 1.79 | 8.10 × 1015 | 9.65 × 1017 | 0.78 × 1017 | 3.25 × 1014 | 2.26 × 1013 | 1.07 × 1013 |
2 | 1.78 | 8.16 × 1015 | 8.53 × 1017 | 0.81 × 1017 | 3.40 × 1014 | 3.23 × 1013 | 1.12 × 1013 |
3 | 1.49 | 9.83 × 1015 | 7.51 × 1017 | 0.90 × 1017 | 3.44 × 1014 | 3.41 × 1013 | 1.23 × 1013 |
4 | 1.29 | 11.47 × 1015 | 7.24 × 1017 | 0.97 × 1017 | 4.47 × 1014 | 3.73 × 1013 | 1.36 × 1013 |
5 | 1.16 | 12.91 × 1015 | 6.43 × 1017 | 1.12 × 1017 | 5.39 × 1014 | 3.94 × 1013 | 1.68 × 1013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, S.; Yang, C.; Yuan, S.; Ai, B.; Qin, C.; Li, Z.; Zhou, Y.; Sun, X.; Yang, J.; Liu, Q.; et al. In-Situ LID and Regeneration of Al-BSF Solar Cells from Different Positions of a B-Doped Cz-Si Ingot. Energies 2022, 15, 5591. https://doi.org/10.3390/en15155591
Ding S, Yang C, Yuan S, Ai B, Qin C, Li Z, Zhou Y, Sun X, Yang J, Liu Q, et al. In-Situ LID and Regeneration of Al-BSF Solar Cells from Different Positions of a B-Doped Cz-Si Ingot. Energies. 2022; 15(15):5591. https://doi.org/10.3390/en15155591
Chicago/Turabian StyleDing, Siqi, Chen Yang, Shuai Yuan, Bin Ai, Cheng Qin, Zhengke Li, Yecheng Zhou, Xiaopu Sun, Jianghai Yang, Quan Liu, and et al. 2022. "In-Situ LID and Regeneration of Al-BSF Solar Cells from Different Positions of a B-Doped Cz-Si Ingot" Energies 15, no. 15: 5591. https://doi.org/10.3390/en15155591
APA StyleDing, S., Yang, C., Yuan, S., Ai, B., Qin, C., Li, Z., Zhou, Y., Sun, X., Yang, J., Liu, Q., & Liang, X. (2022). In-Situ LID and Regeneration of Al-BSF Solar Cells from Different Positions of a B-Doped Cz-Si Ingot. Energies, 15(15), 5591. https://doi.org/10.3390/en15155591