Comparative Study of PM10 Concentrations and Their Elemental Composition Using Two Different Techniques during Winter–Spring Field Observation in Polish Village
Abstract
:1. Introduction
- Concentration levels of PM10 are identical regardless of the method of sampling and analysis;
- Concentration levels of PM10-bound elements are identical regardless of the method of analysis; and
- Concentration levels of PM10 and PM10-bound elements are identical regardless of the season (winter-spring relation).
2. Materials and Methods
2.1. Observation Site Description
2.1.1. Characteristic of the Village—Location and Sources of Air Pollution
2.1.2. Characteristics of the Village—Emitters and Fuel Consumption
2.2. Sampling and Analysis
2.2.1. PM10 Mass Concentration
2.2.2. Elements
2.3. Weather Conditions
2.4. Statistics
3. Results
3.1. Concentration of PM10
3.2. Concentration of Elements
3.3. Meteorological Data
4. Discussion
4.1. Comparison of GM and CPM—Concentration of PM10
4.2. Comparison of EDXRF and AAS—PM10-Bound Elements
Place; Country | Season | Technique | Cr ng/m3 | Mn ng/m3 | Fe ng/m3 | Ni ng/m3 | Cu ng/m3 | Zn ng/m3 | Pb ng/m3 | K ng/m3 | Ca ng/m3 | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Kotórz Mały, PL | winter | AAS | 4.84 | 9.07 | 222 | 1.46 | 6.49 | 68.6 | 3.36 | 306 | 251 | this study |
Kotórz Mały, PL | spring | AAS | 18.0 | 22.9 | 421 | 11.0 | 53.3 | 29.3 | 1.68 | 318 | 1719 | this study |
Kotórz Mały, PL | winter | EDXRF | 1.28 | 4.21 | 114 | 0.61 | 2.44 | 38.4 | 12.9 | 148 | 220 | this study |
Kotórz Mały, PL | spring | EDXRF | 2.03 | 8.48 | 324 | 0.82 | 2.22 | 32.2 | 10.0 | 164 | 472 | this study |
Grajów, PL | spring | SSMS | 8.0 | 280 | 19.0 | 12.0 | 80.0 | [46] | ||||
Przezchlebie, PL | winter | GFAAS | 23.9 | 16.8 | 443 | 4.95 | 11.1 | 135 | 53.4 | [45] | ||
Przezchlebie, PL | spring | GFAAS | 239.4 | 12.3 | 217 | 6.20 | 2.60 | 72.7 | 20.4 | [45] | ||
Montagney, FR | winter | ICPMS; INAA | 1.2 | 3.8 | 105 | 1.50 | 4.50 | 23.3 | 9.70 | 267 | 234 | [25] |
Zloukovice, CZ | spring | ICP-MS | 0.5 | 0.5 | 16.8 | 13.1 | [54] | |||||
Brzezina, PL | winter | EDXRF | 30 | 40 | 500 | 32.0 | 188 | 85.0 | 648 | 376 | [48] |
4.3. Identification of Sources of PM10 and PM10-Bound Elements
5. Conclusions
- -
- The concentrations of PM10 measured by both methods in the winter were equivalent. In the case of the spring season, only after the fifth day of measurements was it observed that the PM10 concentrations were comparable, with both methods indicating the same trend of increase and decrease in PM10 concentrations.
- -
- The lack of significant seasonal differences in PM10 concentrations probably results from the fact that April in Poland is also included in the heating season. Significant changes in PM concentrations were noticeable with the beginning and end of the heating season, which is conventionally assumed to last from 15 October to 25 April.
- -
- Atmospheric conditions had a significant impact on PM10 concentrations. The highest concentrations were recorded at weak advection, lack of precipitation and temperature drop.
- -
- Both methods showed that Ca, Fe and K had the highest mass shares in PM10 mass both in winter and spring.
- -
- The indications of both methods slightly differed in the case of elements with the lowest share in PM10 mass. In winter, the order for AAS was Cr > Pb > Ni, while in spring, it was Cr > Ni > Pb. For EDXRF, the order was the same for the elements with the lowest concentrations: Cu > Cr > Ni.
- -
- Clear discrepancies were observed in the concentrations of PM10-bound elements in individual seasons. Higher concentrations of PM-bound elements and, thus, higher shares in PM mass were observed in the spring (3.2% for EDXRF; 5.2% for AAS) compared to the winter (1.6% for EDXRF; 2.0% for AAS).
- -
- In winter, the concentration of PM10 and its elemental composition were determined by two components: natural sources (erosion from soil that was not covered with snow at the time of measurement, erosion from plants) and anthropogenic sources, that is, combustion of coal and biomass in home furnaces and combustion of fuel in car engines. In spring, the concentration and elemental composition of PM10 was determined by the two sources indicated above as well as by the local horticultural activity.
- -
- The amount of variance explained by factor analysis varies in both seasons, which suggests a variability in the impact of different emission sources. With the simultaneous influence of several sources or the presence of one dominant source, precise determination of the origin of PM is difficult and requires further analysis.
- -
- Hypothesis 1 is only true for the winter campaign period.
- -
- Hypothesis 2 can be considered true only for the second measurement campaign in the case of spring measurements and only for Ca in the winter.
- -
- Hypothesis 3 may be considered true for PM10 and PM10-bound elements with the exception of chromium and crustal elements for EDXRF. For AAS, the hypothesis is true only for potassium.
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Statements & Declarations
Compliance with Ethical Standards
References
- Wang, J.; Pan, Y.; Tian, S.; Chen, X.; Wang, L.; Wang, Y. Size distributions and health risks of particulate trace elements in rural areas in northeastern China. Atmos. Res. 2016, 168, 191–204. [Google Scholar] [CrossRef]
- Roy, D.; Seo, Y.-C.; Kim, S.; Oh, J. Human health risk assessment for airborne PM10-bound metals in Seoul, Korea. Env. Sci Pollut. Res. 2019, 26, 24247–24261. [Google Scholar] [CrossRef]
- Crilley, L.R.; Lucarelli, F.; Bloss, W.J.; Harrison, R.M.; Beddows, D.C.; Calzolai, G.; Nava, S.; Valli, G.; Bernardoni, V.; Vecchi, R. Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign. Environ. Pollut. 2017, 220, 766–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, M.L.O.; Santos, K.M.B.; França, E.J. Comparison Between Edxrf and Faas for Zn Determination in Terrestrial Mollusks. In Proceedings of the 2015 International Nuclear Atlantic Conferen, São Paulo, Brazil, 4–9 October 2015; p. 7. [Google Scholar]
- Visser, S.; Slowik, J.G.; Furger, M.; Zotter, P.; Bukowiecki, N.; Canonaco, F.; Flechsig, U.; Appel, K.; Green, D.C.; Tremper, A.H.; et al. Advanced source apportionment of size-resolved trace elements at multiple sites in London during winter. Atmos. Chem. Phys. 2015, 15, 11291–11309. [Google Scholar] [CrossRef] [Green Version]
- Venter, A.D.; Van Zyl, P.G.; Beukes, J.P.; Josipovic, M.; Hendriks, J.; Vakkari, V.; Laakso, L. Atmospheric trace metals measured at a regional background site (Welgegund) in South Africa. Atmos. Chem. Phys. 2017, 17, 4251–4263. [Google Scholar] [CrossRef] [Green Version]
- Tahri, M.; Benchrif, A.; Bounakhla, M.; Benyaich, F.; Noack, Y. Seasonal variation and risk assessment of PM2.5 and PM2.5-10 in the ambient air of Kenitra, Morocco. Environ. Sci. Process. Impacts 2017, 19, 1427–1436. [Google Scholar] [CrossRef]
- Enamorado-Báez, S.M.; Gómez-Guzmán, J.M.; Chamizo, E.; Abril, J.M. Levels of 25 trace elements in high-volume air filter samples from seville (2001–2002): Sources, enrichment factors and temporal variations. Atmos. Res. 2015, 155, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Contini, D.; Cesari, D.; Donateo, A.; Chirizzi, D.; Belosi, F. Characterization of PM10 And PM2.5 and their metals content in different typologies of sites in South-Eastern Italy. Atmosphere 2014, 5, 435–453. [Google Scholar] [CrossRef] [Green Version]
- Canepari, S.; Astolfi, M.L.; Farao, C.; Maretto, M.; Frasca, D.; Marcoccia, M.; Perrino, C. Seasonal variations in the chemical composition of particulate matter: A case study in the Po Valley. Part II: Concentration and solubility of micro- and trace-elements. Environ. Sci. Pollut. Res. 2014, 21, 4010–4022. [Google Scholar] [CrossRef]
- Alleman, L.Y.; Lamaison, L.; Perdrix, E.; Robache, A.; Galloo, J.C. PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmos. Res. 2010, 96, 612–625. [Google Scholar] [CrossRef]
- Zunic, B.; Peter, S. World’s largest Science, Technology & Medicine Open Access Book Publisher; INTECH: Houston, TX, USA, 2018; pp. 267–322. [Google Scholar]
- Ukaogo, P.O.; Ewuzie, U.; Onwuka, C.V. Environmental pollution: Causes, effects, and the remedies. In Microorganisms for Sustainable Environment and Health; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128190012. [Google Scholar]
- Yadav, I.C.; Devi, N.L. Biomass burning, regional air quality, and climate change. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780444639523. [Google Scholar]
- Coronas, M.V.; Bavaresco, J.; Rocha, J.A.V.; Geller, A.M.; Caramão, E.B.; Rodrigues, M.L.K.; Vargas, V.M.F. Attic dust assessment near a wood treatment plant: Past air pollution and potential exposure. Ecotoxicol. Environ. Saf. 2013, 95, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Majewski, G.; Rogula-Kozlowska, W.; Rozbicka, K.; Rogula-Kopiec, P.; Mathews, B.; Brandyk, A. Concentration, chemical composition and origin of PM1: Results from the first long-term measurement campaign in Warsaw (Poland). Aerosol Air Qual. Res. 2018, 18, 636–654. [Google Scholar] [CrossRef] [Green Version]
- Rogula-Kozłowska, W.; Majewski, G.; Błaszczak, B.; Klejnowski, K.; Rogula-Kopiec, P. Origin-Oriented Elemental Profile of Fine Ambient Particulate Matter in Central European Suburban Conditions. Int. J. Environ. Res. Public Health 2016, 13, 715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mach, T.; Rogula-Kozłowska, W.; Bralewska, K.; Majewski, G.; Rogula-Kopiec, P.; Rybak, J. Impact of municipal, road traffic and natural sources on PM10: The hourly variability at a rural site in Poland. Energies 2021, 14, 2654. [Google Scholar] [CrossRef]
- Olszowski, T. Influence of individual household heating on PM2.5 concentration in a rural settlement. Atmosphere 2019, 10, 782. [Google Scholar] [CrossRef] [Green Version]
- Błaszczyk, E.; Rogula-Kozłowska, W.; Klejnowski, K.; Fulara, I.; Mielżyńska-Švach, D. Polycyclic aromatic hydrocarbons bound to outdoor and indoor airborne particles (PM2.5) and their mutagenicity and carcinogenicity in Silesian kindergartens, Poland. Air Qual. Atmos. Heal. 2016, 10, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Khoshsima, M.; Ahmadi-Givi, F.; Bidokhti, A.A.; Sabetghadam, S. Impact of meteorological parameters on relation between aerosol optical indices and air pollution in a sub-urban area. J. Aerosol Sci. 2014, 68, 46–57. [Google Scholar] [CrossRef]
- Massey, D.D.; Kulshrestha, A.; Taneja, A. Particulate matter concentrations and their related metal toxicity in rural residential environment of semi-arid region of India. Atmos. Environ. 2013, 67, 278–286. [Google Scholar] [CrossRef]
- Grange, S.K.; Salmond, J.A.; Trompetter, W.J.; Davy, P.K.; Ancelet, T. Effect of atmospheric stability on the impact of domestic wood combustion to air quality of a small urban township in winter. Atmos. Environ. 2013, 70, 28–38. [Google Scholar] [CrossRef]
- Maenhaut, W.; Vermeylen, R.; Claeys, M.; Vercauteren, J.; Matheeussen, C.; Roekens, E. Assessment of the contribution from wood burning to the PM10 aerosol in Flanders, Belgium. Sci. Total Environ. 2012, 437, 226–236. [Google Scholar] [CrossRef]
- Gaudry, A.; Moskura, M.; Mariet, C.; Ayrault, S.; Denayer, F.; Bernard, N. Inorganic pollution in PM10 particles collected over three French sites under various influences: Rural conditions, traffic and industry. Water Air Soil Pollut. 2008, 193, 91–106. [Google Scholar] [CrossRef]
- Khedairia, S.; Khadir, M.T. Impact of clustered meteorological parameters on air pollutants concentrations in the region of Annaba, Algeria. Atmos. Res. 2012, 113, 89–101. [Google Scholar] [CrossRef]
- European Commission. Ambient Air Pollution by AS, CD and NI Compounds; European Commission: Luxembourg, 2000; ISBN 9289420545. [Google Scholar]
- Bilo, F.; Borgese, L.; Wambui, A.; Assi, A.; Zacco, A.; Federici, S.; Eichert, D.M.; Tsuji, K.; Lucchini, R.G.; Placidi, D.; et al. Comparison of multiple X-ray fluorescence techniques for elemental analysis of particulate matter collected on air filters. J. Aerosol Sci. 2018, 122, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Diapouli, E.; Manousakas, M.; Vratolis, S.; Vasilatou, V.; Maggos, T.; Saraga, D.; Grigoratos, T.; Argyropoulos, G.; Voutsa, D.; Samara, C.; et al. Evolution of air pollution source contributions over one decade, derived by PM10 and PM2.5 source apportionment in two metropolitan urban areas in Greece. Atmos. Environ. 2017, 164, 416–430. [Google Scholar] [CrossRef]
- Lomboy, M.F.T.C.; Quirit, L.L.; Molina, V.B.; Dalmacion, G.V.; Schwartz, J.D.; Suh, H.H.; Baja, E.S. Characterization of particulate matter 2.5 in an urban tertiary care hospital in the Philippines. Build. Environ. 2015, 92, 432–439. [Google Scholar] [CrossRef]
- López-García, P.; Gelado-Caballero, M.D.; Collado-Sánchez, C.; Hernández-Brito, J.J. Solubility of aerosol trace elements: Sources and deposition fluxes in the Canary Region. Atmos. Environ. 2017, 148, 167–174. [Google Scholar] [CrossRef]
- Nair, P.R.; George, S.K.; Sunilkumar, S.V.; Parameswaran, K.; Jacob, S.; Abraham, A. Chemical composition of aerosols over peninsular India during winter. Atmos. Environ. 2006, 40, 6477–6493. [Google Scholar] [CrossRef]
- Galvão, E.S.; Santos, J.M.; Lima, A.T.; Reis, N.C.; Orlando, M.T.D.A.; Stuetz, R.M. Trends in analytical techniques applied to particulate matter characterization: A critical review of fundaments and applications. Chemosphere 2018, 199, 546–568. [Google Scholar] [CrossRef]
- Bizo, M.L.; Roba, C.; Levei, E.A.; Hoaghia, M.A.; Modoi, C.O.; Ozunu, A. Comparison of FAAS and XRF performance for metal monitoring in brownfields. Environ. Eng. Manag. J. 2015, 14, 2515–2521. [Google Scholar] [CrossRef]
- Custódio, P.J.; Pessanha, S.; Pereira, C.; Carvalho, M.L.; Nunes, M.L. Comparative study of elemental content in farmed and wild life Sea Bass and Gilthead Bream from four different sites by FAAS and EDXRF. Food Chem. 2011, 124, 367–372. [Google Scholar] [CrossRef]
- Mäkinen, E.; Korhonen, M.; Viskari, E.L.; Haapamäki, S.; Järvinen, M.; Lu, L.I. Comparison of XRF and FAAS methods in analysing CCA contaminated soils. Water Air Soil Pollut. 2006, 171, 95–110. [Google Scholar] [CrossRef]
- Morley, J.C.; Clark, C.S.; Deddens, J.A.; Ashley, K.; Roda, S. Evaluation of a portable X-ray fluorescence instrument for the determination of lead in workplace air samples. Appl. Occup. Environ. Hyg. 1999, 14, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Sterling, D.A.; Lewis, R.D.; Luke, D.A.; Shadel, B.N. A portable X-ray fluorescence instrument for analyzing dust wipe samples for lead: Evaluation with field samples. Environ. Res. 2000, 83, 174–179. [Google Scholar] [CrossRef]
- Mohammed, H.; Sadeek, S.; Mahmoud, A.R.; Zaky, D. Comparison of AAS, EDXRF, ICP-MS and INAA performance for determination of selected heavy metals in HFO ashes. Microchem. J. 2016, 128, 1–6. [Google Scholar] [CrossRef]
- Gerboles, M.; Buzica, D.; Alleman, L.; Pfeffer, U.; Gladtke, D.; Olschewski, A.; Leary, B.O.; Pockeviciute, D.; Tursic, J.; Yardley, R. Intercomparison Exercise for Heavy Metals in PM 10; European Commission: Luxembourg, 2008; ISBN 9789279082061. [Google Scholar]
- Yatkin, S.; Belis, C.A.; Gerboles, M.; Calzolai, G.; Lucarelli, F.; Cavalli, F.; Trzepla, K. An interlaboratory comparison study on the measurement of elements in PM10. Atmos. Environ. 2016, 125, 61–68. [Google Scholar] [CrossRef]
- Gupta, S.; Soni, P.; Gupta, A.K. Optimization of WD-XRF analytical technique to measure elemental abundance in PM2.5 dust collected on quartz-fibre filter. Atmos. Pollut. Res. 2021, 12, 345–351. [Google Scholar] [CrossRef]
- Osán, J.; Börcsök, E.; Czömpöly, O.; Dian, C.; Groma, V.; Stabile, L.; Török, S. Experimental evaluation of the in-the-field capabilities of total-reflection X-ray fluorescence analysis to trace fine and ultrafine aerosol particles in populated areas. Spectrochim. Acta Part B 2020, 167, 105852. [Google Scholar] [CrossRef]
- Bartley, D.L.; Slaven, J.E.; Rose, M.C.; Andrew, M.E.; Harper, M. Uncertainty determination for nondestructive chemical analytical methods using field data and application to XRF analysis for lead. J. Occup. Environ. Hyg. 2007, 4, 931–942. [Google Scholar] [CrossRef]
- Mainka, A.; Zajusz-Zubek, E.; Kaczmarek, K. PM10 composition in urban & rural nursery schools in Upper Silesia, Poland: A trace elements analysis. Int. J. Environ. Pollut. 2017, 61, 98. [Google Scholar] [CrossRef]
- Konarski, P.; Hałuszka, J.; Ćwil, M. Comparison of urban and rural particulate air pollution characteristics obtained by SIMS and SSMS. Appl. Surf. Sci. 2006, 252, 7010–7013. [Google Scholar] [CrossRef]
- Olszowski, T.; Tomaszewska, B.; Góralna-Włodarczyk, K. Air quality in non-industrialised area in the typical Polish countryside based on measurements of selected pollutants in immission and deposition phase. Atmos. Environ. 2012, 50, 139–147. [Google Scholar] [CrossRef]
- Samek, L.; Zwoździak, A.; Sówka, I. Chemical characterization and source identification of particulate matter pm 10 in a rural and urban site in poland. Environ. Prot. Eng. 2013, 39, 91–103. [Google Scholar] [CrossRef]
- Austrian Standards Institute Ambient Air—Standard Gravimetric Measurement Method for Hte Determination of the PM10 or PM2. 5 Mass Concentration of Suspended Particulate Matter; Austrian Standards Institute: Vienna, Austria, 2012. [Google Scholar]
- Scheme, A.; Laboratories, F.O.R. SAC-SINGLAS A Guide on Measurement Uncertainty in Chemical & Microbiological Analysis. 2008. Available online: https://fdocuments.in/document/a-guide-on-measurement-uncertainty-in-chemical-guide-on-measurement-uncertainty.html?page=1 (accessed on 8 September 2021).
- Liberti, A. Modern methods for air pollution monitoring. Pure Appl. Chem. 1975, 44, 519–534. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.; Alonso-Blanco, E.; González-Colino, M.; Calvo, A.I.; Fernández-Raga, M.; Fraile, R. Aerosol size distribution in precipitation events in León, Spain. Atmos. Res. 2010, 96, 421–435. [Google Scholar] [CrossRef]
- European Parliament. European Council Directive 2008/50/EC on ambient air quality and cleaner air for Europe. Off. J. Eur. Communities 2008. Available online: https://ec.europa.eu/environment/archives/cafe/pdf/cafe_dir_en.pdf (accessed on 9 May 2021).
- Braniš, M.; Domasová, M.; Řezáčová, P. Particulate air pollution in a small settlement: The effect of local heating. Appl. Geochem. 2007, 22, 1255–1264. [Google Scholar] [CrossRef]
- Jandačka, D.; Ďurčanská, D. Air Pollution by Gases and PM in Rural Areas. Trans. Transp. Sci. 2014, 7, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, L.; Rousseeuw, P. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Kim, M.K.; Jo, W.K. Elemental composition and source characterization of airborne PM10 at residences with relative proximities to metal-industrial complex. Int. Arch. Occup. Environ. Health 2006, 80, 40–50. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, Y.; Sun, Y.; Tian, S.; Cheng, M. Size-resolved aerosol trace elements at a rural mountainous site in Northern China: Importance of regional transport. Sci. Total Environ. 2013, 461–462, 761–771. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Critical review of receptor modelling for particulate matter: A case study of India. Atmos. Environ. 2012, 49, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jandacka, D.; Durcanska, D. Differentiation of particulate matter sources based on the chemical composition of PM10 in functional urban areas. Atmosphere 2019, 10, 583. [Google Scholar] [CrossRef] [Green Version]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Samek, L. Source apportionment of the PM10 fraction of particulate matter collected in Kraków, Poland. Nukleonika 2012, 57, 601–606. [Google Scholar]
- Khare, P.; Baruah, B.P. Elemental characterization and source identification of PM2.5 using multivariate analysis at the suburban site of North-East India. Atmos. Res. 2010, 98, 148–162. [Google Scholar] [CrossRef]
- Rajšić, S.; Mijić, Z.; Tasić, M.; Radenković, M.; Joksić, J. Evaluation of the levels and sources of trace elements in urban particulate matter. Environ. Chem. Lett. 2008, 6, 95–100. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Wang, J.Y.; Liu, W.T.; Lin, P.Y.; Tsai, C.T.; Cheng, M.T. Evaluation of the vehicle contributions of metals to indoor environments. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 489–495. [Google Scholar] [CrossRef]
- Richter, P.; Griño, P.; Ahumada, I.; Giordano, A. Total element concentration and chemical fractionation in airborne particulate matter from Santiago, Chile. Atmos. Environ. 2007, 41, 6729–6738. [Google Scholar] [CrossRef]
- Sternbeck, J.; Sjödin, Å.; Andréasson, K. Metal emissions from road traffic and the influence of resuspension—Results from two tunnel studies. Atmos. Environ. 2002, 36, 4735–4744. [Google Scholar] [CrossRef]
- Toscano, G.; Moret, I.; Gambaro, A.; Barbante, C.; Capodaglio, G. Distribution and seasonal variability of trace elements in atmospheric particulate in the Venice Lagoon. Chemosphere 2011, 85, 1518–1524. [Google Scholar] [CrossRef] [Green Version]
- Kulshrestha, A.; Satsangi, P.G.; Masih, J.; Taneja, A. Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Sci. Total Environ. 2009, 407, 6196–6204. [Google Scholar] [CrossRef]
- Escrig Vidal, A.; Monfort, E.; Celades, I.; Querol, X.; Amato, F.; Minguillón, M.C.; Hopke, P.K. Application of optimally scaled target factor analysis for assessing source contribution of ambient PM10. J. Air Waste Manag. Assoc. 2009, 59, 1296–1307. [Google Scholar] [CrossRef]
- Kavouras, I.G.; Koutrakis, P.; Cereceda-Balic, F.; Oyola, P. Source apportionment of PM10 and PM2.5 in five Chilean cities using factor analysis. J. Air Waste Manag. Assoc. 2001, 51, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Pohlmann, J.T. Use and Interpretation of Factor Analysis in ‘The Journal of Educational Research’: 1992–2002. J. Educ. Res. 2004, 98, 14–22. [Google Scholar] [CrossRef]
- Cattell, R.B. The scree test for the number of factors. Multivar. Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Camacho, R.; Rodríguez, S.; de la Rosa, J.; Sánchez de la Campa, A.M.; Alastuey, A.; Querol, X.; González-Castanedo, Y.; Garcia-Orellana, I.; Nava, S. Ultrafine particle and fine trace metal (As, Cd, Cu, Pb and Zn) pollution episodes induced by industrial emissions in Huelva, SW Spain. Atmos. Environ. 2012, 61, 507–517. [Google Scholar] [CrossRef] [Green Version]
No of IPE = 86, Total Energy Sources = 97 | Heating Systems Share (%); (Number in the Bracket) | |||||
---|---|---|---|---|---|---|
coal | fuel gas | wood | RES | eco-coal | pellets | |
Active during winter campaign | 55 (52) | 4 (4) | 2 (2) | 11 (11) | 24 (23) | 5 (5) |
Active during spring campaign | 50 (41) | 4 (3) | 1 (1) | 13 (11) | 27 (22) | 5 (4) |
Season | Hard Coal | Eco-Coal | Wood | Pellets | Gas |
---|---|---|---|---|---|
Winter | 0.87 | 0.56 | 0.94 | 0.61 | 2.74 |
Single day in winter | 0.018 | 0.011 | 0.019 | 0.012 | 0.06 |
Spring | 0.27 | 0.17 | 0.28 | 0.21 | 1.17 |
Single day in spring | 0.018 | 0.011 | 0.018 | 0.14 | 0.06 |
Year 2019 | 6.9 | 4.2 | 5.8 | 3.6 | 4.08 |
Material | Pb | Cu | Zn | Ni | Cr | Mn | Fe | Ca | K |
---|---|---|---|---|---|---|---|---|---|
Certified [mg/kg] | 113 ±17 | 462 ±nd | 1240 ±nd | 58 ±7 | 201 ±nd | 611 ±nd | 38,144 ±nd | 63,043 ±nd | 10,998 ±nd |
Analysed [mg/kg] | 103 ±4 | 425 ±19 | 1216 ±100 | 63 ±7 | 169 ±4 | 506 ±24 | 37,339 ±3160 | 56,410 ±3115 | 9388 ±331 |
recovery [%] | 91 | 92 | 98 | 108 | 84 | 83 | 98 | 89 | 85 |
GO mg/kg DM LOQ | 1 | 10 | 10 | 10 | 10 | 10 | 10 | 50 | 30 |
GW mg/kg DM LOD | 0.3 | 3 | 3 | 3 | 3 | 3 | 3 | 17 | 10 |
CPM PM10 | GM PM10 | T | Ap | Ws | Wd | P | |
---|---|---|---|---|---|---|---|
CPM PM10 | 0.94 | −0.61 | 0.21 | −0.40 | 0.02 | −0.40 | |
GM PM10 | 0.68 | −0.58 | 0.14 | −0.28 | 0.04 | −0.45 | |
T | 0.32 | −0.17 | |||||
Ap | −0.46 | −0.38 | |||||
Ws | −0.28 | −0.40 | |||||
Wd | −0.18 | −0.30 | |||||
P | −0.53 | −0.48 |
CPM PM10 | XRF Cr | XRF Mn | XRF Fe | XRF Ni | XRF Cu | XRF Zn | XRF Pb | XRF K | XRF Ca | GM PM10 | AAS Cr | AAS Mn | AAS Fe | AAS Ni | AAS Cu | AAS Zn | AAS Pb | AAS K | AAS Ca | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CPM PM10 | 0.23 | 0.63 | 0.70 | 0.45 | 0.69 | 0.89 | 0.77 | 0.79 | 0.56 | |||||||||||
XRF Cr | 0.32 | 0.60 | 0.62 | 0.49 | 0.46 | 0.31 | 0.20 | 0.21 | 0.46 | 0.43 | 0.31 | 0.29 | 0.27 | 0.20 | 0.28 | 0.17 | 0.23 | 0.31 | ||
XRF Mn | 0.58 | 0.72 | 0.89 | 0.54 | 0.63 | 0.54 | 0.36 | 0.43 | 0.74 | 0.49 | 0.57 | 0.59 | 0.41 | 0.41 | 0.47 | 0.33 | 0.48 | 0.55 | ||
XRF Fe | 0.69 | 0.76 | 0.93 | 0.66 | 0.72 | 0.61 | 0.45 | 0.47 | 0.82 | 0.60 | 0.59 | 0.67 | 0.52 | 0.58 | 0.50 | 0.35 | 0.54 | 0.61 | ||
XRF Ni | 0.28 | 0.84 | 0.65 | 0.69 | 0.64 | 0.38 | 0.39 | 0.37 | 0.58 | 0.40 | 0.45 | 0.60 | 0.63 | 0.44 | 0.39 | 0.29 | 0.34 | 0.50 | ||
XRF Cu | 0.19 | 0.18 | 0.28 | 0.25 | 0.35 | 0.68 | 0.60 | 0.63 | 0.56 | 0.65 | 0.60 | 0.68 | 0.70 | 0.75 | 0.54 | 0.42 | 0.53 | 0.63 | ||
XRF Zn | 0.51 | 0.36 | 0.57 | 0.56 | 0.33 | 0.12 | 0.81 | 0.79 | 0.42 | 0.64 | 0.68 | 0.70 | 0.58 | 0.59 | 0.74 | 0.61 | 0.67 | 0.61 | ||
XRF Pb | 0.25 | −0.04 | 0.27 | 0.18 | 0.13 | 0.12 | 0.72 | 0.90 | 0.19 | 0.58 | 0.63 | 0.63 | 0.70 | 0.52 | 0.61 | 0.61 | 0.65 | 0.55 | ||
XRF K | 0.74 | 0.65 | 0.87 | 0.95 | 0.56 | 0.16 | 0.54 | 0.19 | 0.25 | 0.61 | 0.67 | 0.60 | 0.70 | 0.50 | 0.66 | 0.63 | 0.68 | 0.58 | ||
XRF Ca | 0.59 | 0.71 | 0.88 | 0.97 | 0.67 | 0.17 | 0.50 | 0.11 | 0.94 | 0.38 | 0.47 | 0.49 | 0.36 | 0.49 | 0.45 | 0.25 | 0.34 | 0.62 | ||
GM PM10 | 0.73 | 0.80 | 0.82 | 0.73 | 0.63 | 0.76 | 0.68 | 0.75 | 0.72 | |||||||||||
AAS Cr | 0.61 | 0.23 | 0.36 | 0.46 | 0.28 | 0.16 | 0.29 | 0.24 | 0.47 | 0.43 | 0.85 | 0.68 | 0.68 | 0.74 | 0.74 | 0.68 | 0.65 | 0.58 | 0.64 | |
AAS Mn | 0.23 | −0.11 | 0.08 | −0.08 | −0.10 | −0.05 | 0.06 | 0.14 | −0.08 | −0.16 | 0.42 | 0.35 | 0.73 | 0.71 | 0.57 | 0.82 | 0.64 | 0.59 | 0.82 | |
AAS Fe | 0.64 | 0.36 | 0.55 | 0.59 | 0.36 | 0.35 | 0.45 | 0.13 | 0.61 | 0.55 | 0.80 | 0.70 | 0.26 | 0.78 | 0.66 | 0.64 | 0.57 | 0.66 | 0.71 | |
AAS Ni | 0.55 | 0.16 | 0.36 | 0.38 | −0.02 | −0.31 | 0.15 | −0.12 | 0.46 | 0.35 | 0.77 | 0.56 | 0.19 | 0.55 | 0.69 | 0.66 | 0.69 | 0.59 | 0.71 | |
AAS Cu | −0.29 | 0.06 | −0.17 | −0.20 | 0.07 | −0.12 | −0.16 | −0.04 | −0.40 | −0.21 | −0.27 | −0.22 | 0.16 | −0.29 | −0.39 | 0.55 | 0.52 | 0.50 | 0.65 | |
AAS Zn | −0.17 | 0.36 | 0.29 | 0.22 | 0.43 | 0.18 | 0.38 | 0.18 | 0.11 | 0.28 | 0.29 | 0.30 | −0.05 | 0.48 | 0.06 | 0.08 | 0.75 | 0.58 | 0.74 | |
AAS Pb | −0.21 | 0.32 | 0.01 | 0.02 | 0.44 | 0.22 | −0.29 | −0.29 | −0.11 | 0.02 | 0.12 | 0.26 | −0.08 | 0.28 | 0.17 | 0.07 | 0.52 | 0.65 | 0.59 | |
AAS K | 0.34 | 0.14 | 0.28 | 0.24 | 0.03 | 0.09 | 0.06 | −0.15 | 0.23 | 0.24 | 0.48 | 0.14 | 0.15 | 0.53 | 0.27 | 0.03 | 0.22 | 0.11 | 0.48 | |
AAS Ca | −0.28 | −0.55 | −0.50 | −0.52 | −0.23 | 0.05 | −0.25 | 0.14 | −0.54 | −0.47 | −0.44 | −0.37 | 0.07 | −0.43 | −0.66 | 0.36 | −0.23 | −0.24 | 0.10 |
Relation | Mass Concentration | Elements Share in PM10 |
---|---|---|
Winter session | ||
EDXRF-AAS Cr | 0.000 | 0.000 |
EDXRF-AAS Mn | 0.001 | 0.368 |
EDXRF-AAS Fe | 0.000 | 0.000 |
EDXRF-AAS Ni | 0.000 | 0.250 |
EDXRF-AAS Cu | 0.000 | 0.000 |
EDXRF-AAS Zn | 0.000 | 0.082 |
EDXRF-AAS Pb | 0.000 | 0.000 |
EDXRF-AAS K | 0.000 | 0.000 |
EDXRF-AAS Ca | 0.238 | 0.001 |
Spring session | ||
EDXRF-AAS Cr | 0.000 | 0.001 |
EDXRF-AAS Mn | 0.001 | 0.035 |
EDXRF-AAS Fe | 0.099 | 0.609 |
EDXRF-AAS Ni | 0.000 | 0.001 |
EDXRF-AAS Cu | 0.000 | 0.001 |
EDXRF-AAS Zn | 0.820 | 0.023 |
EDXRF-AAS Pb | 0.001 | 0.001 |
EDXRF-AAS K | 0.005 | 0.035 |
EDXRF-AAS Ca | 0.000 | 0.003 |
CPM PM10 | GM PM10 | Cr | Mn | Fe | Ni | Cu | Zn | Pb | K | Ca | |
---|---|---|---|---|---|---|---|---|---|---|---|
CPM-EDXRF | 0.400 | 0.002 | 0.000 | 0.000 | 0.824 | 0.267 | 0.178 | 0.281 | 0.787 | 0.006 | |
GM-AAS | 0.862 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.005 | 0.000 | 0.055 | 0.000 |
No. of Factor | Eigenvalues | % of Total Variance | Accumulated Eigenvalues | Cumulative % of Explained Variance | |
---|---|---|---|---|---|
EDXRF winter | 1 | 3.58 | 71.68 | 3.58 | 71.7 |
2 | 0.82 | 16.45 | 4.41 | 88.1 | |
AAS winter | 1 | 3.86 | 77.39 | 3.86 | 77.4 |
2 | 0.8 | 16.07 | 4.67 | 93.5 | |
EDXRF spring | 1 | 3.38 | 67.53 | 3.38 | 67.5 |
2 | 1.03 | 20.65 | 4.41 | 88.2 | |
AAS spring | 1 | 1.97 | 39.43 | 1.97 | 39.4 |
2 | 1.38 | 27.54 | 3.35 | 67.0 | |
3 | 0.89 | 17.76 | 4.24 | 84.7 |
EDXRF Winter | AAS Winter | EDXRF Spring | AAS Spring | ||||||
---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F1 | F2 | F1 | F2 | F1 | F2 | F3 | |
Mn | 0.868 | 0.362 | 0.846 | 0.479 | 0.536 | 0.814 | 0.446 | −0.615 | 0.362 |
Fe | 0.833 | 0.489 | 0.958 | 0.210 | 0.667 | 0.702 | 0.954 | 0.063 | −0.133 |
Cu | 0.218 | 0.895 | 0.180 | 0.966 | 0.875 | −0.022 | −0.091 | −0.051 | 0.970 |
Zn | 0.342 | 0.853 | 0.808 | 0.520 | −0.041 | 0.926 | 0.889 | 0.051 | 0.023 |
Ca | 0.933 | 0.154 | 0.934 | 0.078 | 0.871 | 0.371 | −0.244 | −0.890 | −0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mach, T.; Olszowski, T.; Rogula-Kozłowska, W.; Rybak, J.; Bralewska, K.; Rogula-Kopiec, P.; Bożym, M.; Majewski, G.; Ziembik, Z.; Kuczuk, A. Comparative Study of PM10 Concentrations and Their Elemental Composition Using Two Different Techniques during Winter–Spring Field Observation in Polish Village. Energies 2022, 15, 4769. https://doi.org/10.3390/en15134769
Mach T, Olszowski T, Rogula-Kozłowska W, Rybak J, Bralewska K, Rogula-Kopiec P, Bożym M, Majewski G, Ziembik Z, Kuczuk A. Comparative Study of PM10 Concentrations and Their Elemental Composition Using Two Different Techniques during Winter–Spring Field Observation in Polish Village. Energies. 2022; 15(13):4769. https://doi.org/10.3390/en15134769
Chicago/Turabian StyleMach, Tomasz, Tomasz Olszowski, Wioletta Rogula-Kozłowska, Justyna Rybak, Karolina Bralewska, Patrycja Rogula-Kopiec, Marta Bożym, Grzegorz Majewski, Zbigniew Ziembik, and Anna Kuczuk. 2022. "Comparative Study of PM10 Concentrations and Their Elemental Composition Using Two Different Techniques during Winter–Spring Field Observation in Polish Village" Energies 15, no. 13: 4769. https://doi.org/10.3390/en15134769
APA StyleMach, T., Olszowski, T., Rogula-Kozłowska, W., Rybak, J., Bralewska, K., Rogula-Kopiec, P., Bożym, M., Majewski, G., Ziembik, Z., & Kuczuk, A. (2022). Comparative Study of PM10 Concentrations and Their Elemental Composition Using Two Different Techniques during Winter–Spring Field Observation in Polish Village. Energies, 15(13), 4769. https://doi.org/10.3390/en15134769