Lithium Battery State-of-Charge Estimation Based on a Bayesian Optimization Bidirectional Long Short-Term Memory Neural Network
Abstract
:1. Introduction
2. SOC Estimation Methods
2.1. LSTM Network
- (a)
- Select the part of old cell information forgotten through the “forgetting gate”, multiply the old state with , and discard the information determined to be discarded.
- (b)
- Add the candidate cell information through the “input gate” and then add to obtain the cell state as in Equation (6).
2.2. Bidirectional LSTM Network
2.3. SOC Estimation Based on Bayes-BiLSTM
3. Data and Experiments
3.1. Battery Data Set
3.2. Experimental Process
4. Analysis and Discussion of Experimental Results
4.1. SOC Estimation under Different Hidden Layer Units
4.2. SOC Estimation of Improved Circulation Blocks at Different Temperatures
4.3. SOC Estimation in a Variable Temperature Environment
4.4. Comparison of Different Methods
4.5. Experiments on the Generalizability of the Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SOC | State of charge |
LSTM | Long short-term memory |
BiLSTM | Bidirectional long short-term memory |
Bayes-BiLSTM | Bayesian optimization-based bidirectional long short-term memory |
BMS | Battery management system |
RNN | Recurrent neural network |
LS–SVM | Least-squares support vector machine |
GRU | Gated recurrent unit |
GRU-ATL | Gated recurrent neural network model with an activation functional layer |
DAE | Denoising auto-encoder |
MCNN-BRNN | Multichannel convolution and bidirectional recurrent neural network |
SBLSTM | Stacked bidirectional long short-term memory |
OCV | Open-circuit voltage |
RMSE | Root mean square error |
MAPE | Mean absolute percentage error |
MAE | Mean absolute error |
References
- Chen, J.; Feng, X.; Jiang, L.; Zhu, Q. State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network. Energy 2021, 227, 120451. [Google Scholar] [CrossRef]
- Duan, W.; Song, C.; Peng, S.; Xiao, F.; Shao, Y.; Song, S. An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery. Energies 2020, 13, 6366. [Google Scholar] [CrossRef]
- Espedal Ingvild, B.; Asanthi, J.; Burheim Odne, S.; Lamb Jacob, J. Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles. Energies 2021, 14, 3284. [Google Scholar] [CrossRef]
- Chemali, E.; Kollmeyer, P.J.; Preindl, M.; Emadi, A. State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach. J. Power Sources 2018, 400, 242–255. [Google Scholar] [CrossRef]
- Samarendra, P.S.; Praveen, P.S.; Sri, N.S.; Prabhakar, T. State of charge and health estimation of batteries for electric vehicles applications: Key issues and challenges. Glob. Energy Interconnect. 2021, 4, 145–157. [Google Scholar]
- Rui, X.; Jiayi, C.; Quanqing, Y.; Hongwen, H.; Fengchun, S. Critical Review on the Battery State of Charge Estimation Methods for Electric Vehicles. IEEE Access 2018, 6, 1832–1843. [Google Scholar]
- Li, Z.; Huang, J.; Liaw, B.Y.; Zhang, J. On state-of-charge determination for lithium-ion batteries. J. Power Sources 2017, 348, 281–301. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Yu, X.; Wang, C.; Zhang, C.; Huang, R.; Zhou, Q.; Amietszajew, T.; Bhagat, R. State of Charge Estimation for Lithium-Ion Battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator. Energy 2020, 214, 11199–11218. [Google Scholar] [CrossRef]
- Deng, Z.; Yang, L.; Cai, Y.; Deng, H. Online Identification with Reliability Criterion and State of Charge Estimation Based on a Fuzzy Adaptive Extended Kalman Filter for Lithium-Ion Batteries. Energies 2016, 9, 472. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Guo, X.; Zhang, X. An improved adaptive unscented kalman filtering for state of charge online estimation of lithium-ion battery. J. Energy Storage 2020, 32, 101980. [Google Scholar] [CrossRef]
- Chen, J.; Lu, C.; Chen, C.; Cheng, H.; Xuan, D. An Improved Gated Recurrent Unit Neural Network for State-of-Charge Estimation of Lithium-Ion Battery. Appl. Sci. 2022, 12, 2305. [Google Scholar] [CrossRef]
- Alvarez Anton, J.C.; Garcia Nieto, P.J.; Blanco Viejo, C.; Vilan Vilan, J.A. Support Vector Machines Used to Estimate the Battery State of Charge. IEEE Trans. Power Electron. 2013, 28, 5919–5926. [Google Scholar] [CrossRef]
- Li, Y.; Sheng, H.; Cheng, Y.; Stroe, D.; Teodorescu, R. State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis. Appl. Energy 2020, 277, 115504. [Google Scholar] [CrossRef]
- Liu, X.; Dai, Y. Energy storage battery SOC estimate based on improved BP neural network. J. Phys. Conf. Ser. 2022, 2187, 012042. [Google Scholar] [CrossRef]
- Zhang, L.; Li, K.; Du, D.; Zhu, C.; Zheng, M. A sparse least squares support vector machine used for SOC estimation of Li-ion Batteries. IFAC Pap. 2019, 52, 256–261. [Google Scholar] [CrossRef]
- Li, C.; Xiao, F.; Fan, Y. Approach to lithium battery SOC estimation based on recurrent neural network. J. Nav. Univ. Eng. 2019, 31, 107–112. [Google Scholar]
- Li, S.; Ju, C.; Li, J.; Fang, R.; Tao, Z.; Li, B.; Zhang, T. State-of-Charge Estimation of Lithium-Ion Batteries in the Battery Degradation Process Based on Recurrent Neural Network. Energies 2021, 14, 306. [Google Scholar] [CrossRef]
- Ephrem, C.; Kollmeyer Phillip, J.; Matthias, P.; Ryan, A.; Ali, E. Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-ion Batteries. IEEE Trans. Ind. Electron. 2018, 65, 6730–6739. [Google Scholar]
- Li, C.; Xiao, F.; Fan, Y. An Approach to State of Charge Estimation of Lithium-Ion Batteries Based on Recurrent Neural Networks with Gated Recurrent Unit. Energies 2019, 12, 1592. [Google Scholar] [CrossRef] [Green Version]
- Chong, B.; Shunkun, Y.; Jie, L.; Enrico, Z. Robust state-of-charge estimation of Li-ion batteries based on multichannel convolutional and bidirectional recurrent neural networks. Appl. Soft Comput. J. 2022, 116, 108401. [Google Scholar]
- Bian, C.; He, H.; Yang, S. Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries. Energy 2020, 191, 116538. [Google Scholar] [CrossRef]
- Feng, X.; Chen, J.; Zhang, Z.; Miao, S.; Zhu, Q. State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network. Energy 2021, 236, 121360. [Google Scholar] [CrossRef]
- Alessandro, R.; Nicolò, G.; Antonio, C.; Matteo, B. Bayesian optimization and deep learning for steering wheel angle prediction. Sci. Rep. 2022, 12, 8739. [Google Scholar]
- Xiong, X.; Guo, X.; Zeng, P.; Zou, R.; Wang, X. A Short-Term Wind Power Forecast Method via XGBoost Hyper-Parameters Optimization. Front. Energy Res. 2022, 10, 574. [Google Scholar] [CrossRef]
- Cui, J.; Yang, B. Survey on Optimization Methodology and Applications. J. Softw. 2018, 29, 3068–3090. [Google Scholar]
- Kollmeyer, P. Panasonic 18650pf li-ion battery data. Mendeley Data 2018. [Google Scholar] [CrossRef]
- Raj, T.; Wang, A.A.; Monroe, C.W.; Howey, D.A. Investigation of Path-Dependent Degradation in Lithium-Ion Batteries. Batter. Supercaps 2020, 3, 1377–1385. [Google Scholar] [CrossRef]
- Ren, X.; Liu, S.; Yu, X.; Dong, X. A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM. Energy 2021, 234, 121236. [Google Scholar] [CrossRef]
Battery Type | INR 18650-20R | 18650 NCA |
---|---|---|
Nominal capacity | 2000 mAh | 3000 mAh |
Nominal voltage | 3.6 V | 3.6 V |
Charge cut-off voltage | 4.2 V | 4.2 V |
Discharge cut-off voltage | 2.5 V | 2.5 V |
Number of Hidden Layer Units | Evaluation Indicators | Temperature | ||
---|---|---|---|---|
45 °C | 25 °C | 0 °C | ||
16 | MAE (%) | 1.18 | 2.08 | 1.27 |
MAPE (%) | 24.39 | 28.60 | 35.75 | |
RMSE (%) | 1.56 | 2.40 | 1.74 | |
32 | MAE (%) | 0.97 | 2.01 | 1.11 |
MAPE (%) | 30.22 | 25.13 | 42.47 | |
RMSE (%) | 1.43 | 2.19 | 1.85 | |
64 | MAE (%) | 0.83 | 1.97 | 1.01 |
MAPE (%) | 28.05 | 20.70 | 33.11 | |
RMSE (%) | 1.30 | 2.09 | 1.57 | |
128 | MAE (%) | 0.82 | 2.11 | 1.53 |
MAPE (%) | 32.66 | 41.82 | 44.76 | |
RMSE (%) | 1.36 | 2.57 | 2.53 | |
256 | MAE (%) | 0.90 | 1.99 | 1.44 |
MAPE (%) | 24.16 | 39.20 | 50.16 | |
RMSE (%) | 1.48 | 2.52 | 2.69 |
Improved Model | 45 °C | 25 °C | 0 °C |
---|---|---|---|
MAE (%) | 0.6 | 1.16 | 0.85 |
MAPE (%) | 6.56 | 6.39 | 9.03 |
RMSE (%) | 0.89 | 1.29 | 1.07 |
Test Conditions | MAE (%) | MAPE (%) | RMSE (%) |
---|---|---|---|
BJDST | 0.93 | 10.05 | 1.24 |
Method | ||||
---|---|---|---|---|
Bayes-BiLSTM | 82 | 94 | 0.000396 | 0.18722 |
Methods | MAE (%) | MAPE (%) | RMSE (%) |
---|---|---|---|
LSTM | 1.26 | 14.52 | 1.46 |
BiLSTM | 0.83 | 28.05 | 1.30 |
Bayes-BiLSTM | 0.60 | 6.56 | 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Wang, Y.; Zhan, Y. Lithium Battery State-of-Charge Estimation Based on a Bayesian Optimization Bidirectional Long Short-Term Memory Neural Network. Energies 2022, 15, 4670. https://doi.org/10.3390/en15134670
Yang B, Wang Y, Zhan Y. Lithium Battery State-of-Charge Estimation Based on a Bayesian Optimization Bidirectional Long Short-Term Memory Neural Network. Energies. 2022; 15(13):4670. https://doi.org/10.3390/en15134670
Chicago/Turabian StyleYang, Biao, Yinshuang Wang, and Yuedong Zhan. 2022. "Lithium Battery State-of-Charge Estimation Based on a Bayesian Optimization Bidirectional Long Short-Term Memory Neural Network" Energies 15, no. 13: 4670. https://doi.org/10.3390/en15134670
APA StyleYang, B., Wang, Y., & Zhan, Y. (2022). Lithium Battery State-of-Charge Estimation Based on a Bayesian Optimization Bidirectional Long Short-Term Memory Neural Network. Energies, 15(13), 4670. https://doi.org/10.3390/en15134670