Novel Combustion Techniques for Clean Energy
Funding
Conflicts of Interest
References
- McLennan, M.; Group, S. The Global Risks Report 2021, 16th ed.; World Economic Forum: Cologny, Switzerland, 2021. [Google Scholar]
- Global Energy Review: CO2 Emissions in 2021–Analysis. Available online: https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2 (accessed on 11 March 2022).
- Krzywanski, J.; Ashraf, W.M.; Czakiert, T.; Sosnowski, M.; Grabowska, K.; Zylka, A.; Kulakowska, A.; Skrobek, D.; Mistal, S.; Gao, Y. CO2 Capture by Virgin Ivy Plants Growing Up on the External Covers of Houses as a Rapid Complementary Route to Achieve Global GHG Reduction Targets. Energies 2022, 15, 1683. [Google Scholar] [CrossRef]
- Krzywanski, J.; Blaszczuk, A.; Czakiert, T.; Rajczyk, R.; Nowak, W. Artificial Intelligence Treatment of NOX Emissions from CFBC in Air and Oxy-Fuel Conditions. In Proceedings of the 11th International Conference on Fluidized Bed Technology (CFB-11), Beijing, China, 14–17 May 2014; pp. 619–624. [Google Scholar]
- Zylka, A.; Krzywanski, J.; Czakiert, T.; Idziak, K.; Sosnowski, M.; Grabowska, K.; Prauzner, T.; Nowak, W. The 4th Generation of CeSFaMB in Numerical Simulations for CuO-Based Oxygen Carrier in CLC System. Fuel 2019, 255, 115776. [Google Scholar] [CrossRef]
- Fortunato, V.; Giraldo, A.; Rouabah, M.; Nacereddine, R.; Delanaye, M.; Parente, A. Experimental and Numerical Investigation of a MILD Combustion Chamber for Micro Gas Turbine Applications. Energies 2018, 11, 3363. [Google Scholar] [CrossRef] [Green Version]
- Azam, M.; Ashraf, A.; Setoodeh Jahromy, S.; Miran, S.; Raza, N.; Wesenauer, F.; Jordan, C.; Harasek, M.; Winter, F. Co-Combustion Studies of Low-Rank Coal and Refuse-Derived Fuel: Performance and Reaction Kinetics. Energies 2021, 14, 3796. [Google Scholar] [CrossRef]
- Čepić, Z.; Mihajlović, V.; Đurić, S.; Milotić, M.; Stošić, M.; Stepanov, B.; Ilić Mićunović, M. Experimental Analysis of Temperature Influence on Waste Tire Pyrolysis. Energies 2021, 14, 5403. [Google Scholar] [CrossRef]
- Lee, C.W.; Kim, I.S.; Hong, J.G. Experimental Investigation on the Effects of the Geometry of the Pilot Burner on Main Flame. Energies 2021, 14, 1115. [Google Scholar] [CrossRef]
- Zhao, B.; Chen, G.; Xiong, Z.; Qin, L.; Chen, W.; Han, J. A Model for Predicting Arsenic Volatilization during Coal Combustion Based on the Ash Fusion Temperature and Coal Characteristic. Energies 2021, 14, 334. [Google Scholar] [CrossRef]
- Muhammad Ashraf, W.; Moeen Uddin, G.; Muhammad Arafat, S.; Afghan, S.; Hassan Kamal, A.; Asim, M.; Haider Khan, M.; Waqas Rafique, M.; Naumann, U.; Niazi, S.G.; et al. Optimization of a 660 MWe Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency. Energies 2020, 13, 5592. [Google Scholar] [CrossRef]
- Muhammad Ashraf, W.; Moeen Uddin, G.; Hassan Kamal, A.; Haider Khan, M.; Khan, A.A.; Afroze Ahmad, H.; Ahmed, F.; Hafeez, N.; Muhammad Zawar Sami, R.; Muhammad Arafat, S.; et al. Optimization of a 660 MWe Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management. Part 2. Power Generation. Energies 2020, 13, 5619. [Google Scholar] [CrossRef]
- Idziak, K.; Czakiert, T.; Krzywanski, J.; Zylka, A.; Kozlowska, M.; Nowak, W. Safety and Environmental Reasons for the Use of Ni-, Co-, Cu-, Mn- and Fe-Based Oxygen Carriers in CLC/CLOU Applications: An Overview. Fuel 2020, 268, 117245. [Google Scholar] [CrossRef]
- Zylka, A.; Krzywanski, J.; Czakiert, T.; Idziak, K.; Sosnowski, M.; de Souza-Santos, M.L.; Sztekler, K.; Nowak, W. Modeling of the Chemical Looping Combustion of Hard Coal and Biomass Using Ilmenite as the Oxygen Carrier. Energies 2020, 13, 5394. [Google Scholar] [CrossRef]
- Tang, Y.; Lou, D.; Wang, C.; Tan, P.; Hu, Z.; Zhang, Y.; Fang, L. Study of Visualization Experiment on the Influence of Injector Nozzle Diameter on Diesel Engine Spray Ignition and Combustion Characteristics. Energies 2020, 13, 5337. [Google Scholar] [CrossRef]
- Lund, H.; Arler, F.; Østergaard, P.A.; Hvelplund, F.; Connolly, D.; Mathiesen, B.V.; Karnøe, P. Simulation versus Optimisation: Theoretical Positions in Energy System Modelling. Energies 2017, 10, 840. [Google Scholar] [CrossRef]
- Sosnowski, M.; Krzywanski, J.; Ščurek, R. Artificial Intelligence and Computational Methods in the Modeling of Complex Systems. Entropy 2021, 23, 586. [Google Scholar] [CrossRef] [PubMed]
- Sosnowski, M.; Krzywanski, J.; Scurek, R. A Fuzzy Logic Approach for the Reduction of Mesh-Induced Error in CFD Analysis: A Case Study of an Impinging Jet. Entropy 2019, 21, 1047. [Google Scholar] [CrossRef] [Green Version]
- Krzywanski, J. A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods. Energies 2019, 12, 4441. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzywanski, J.; Nowak, W.; Sztekler, K. Novel Combustion Techniques for Clean Energy. Energies 2022, 15, 4649. https://doi.org/10.3390/en15134649
Krzywanski J, Nowak W, Sztekler K. Novel Combustion Techniques for Clean Energy. Energies. 2022; 15(13):4649. https://doi.org/10.3390/en15134649
Chicago/Turabian StyleKrzywanski, Jaroslaw, Wojciech Nowak, and Karol Sztekler. 2022. "Novel Combustion Techniques for Clean Energy" Energies 15, no. 13: 4649. https://doi.org/10.3390/en15134649
APA StyleKrzywanski, J., Nowak, W., & Sztekler, K. (2022). Novel Combustion Techniques for Clean Energy. Energies, 15(13), 4649. https://doi.org/10.3390/en15134649