A Thermodynamic Model for Carbon Dioxide Storage in Underground Salt Caverns
Abstract
:1. Introduction
2. Integrated Wellbore–Cavity Thermomechanical Coupling Model for Salt Caverns
2.1. Engineering Background
2.2. Model Description
2.3. Basic Assumptions of the Model
- (1)
- The cycling loading of CO2 in the salt cavity was dry, and the influence of brine at the bottom of the cavity and residual water at the cavity wall was not considered.
- (2)
- The composition of CO2 remained unchanged at any time during the processes of injection and withdrawal.
- (3)
- The solution mine was not newly built and put into withdrawal, and the influence of the cold zone caused by the cooling of the surrounding rock by low-temperature water circulation in the process of dissolving the cavity was ignored.
- (4)
- The creep behavior of salt rock was neglected because the period for the simulation was too short to account for the convergence of volume.
- (5)
- All rock materials in this model were isotropic.
2.4. Material Parameters
2.5. Physical Field and Governing Equation
2.6. Boundary Conditions
2.7. Grid Division
3. Thermodynamic Behavior
3.1. Comparison of the Thermodynamic Behavior of CO2 and CH4
3.2. Thermodynamic Behavior of CO2 Subjected to Storage Conditions
3.3. Joule–Thomson Effect Analysis
3.3.1. Analysis of the Joule–Thomson Effect
3.3.2. Analysis of Temperature Changes
- (1)
- Different shapes
- (1)
- Different sizes
4. Simulation Results and Discussion
4.1. Temperature Response to Gas Withdrawal
4.2. CO2 Storage Capacity
4.3. Stability Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brouard, B.; Berest, P.; Djizanne, H.; Frangi, A. Mechanical stability of a salt cavern submitted to high-frequency cycles. In Mechanical Behavior of Salt VII.; Taylor & Francis Group: Paris, France, 2012; pp. 381–390. [Google Scholar]
- Fan, J.; Xie, H.; Chen, J.; Jiang, D.; Li, C.; Tiedeu, W.N.; Ambre, J. Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs. Appl. Energy 2020, 258, 114007. [Google Scholar] [CrossRef]
- Wang, T.; Yang, C.; Yan, X.; Li, Y.; Liu, W.; Liang, C.; Li, J. Dynamic response of underground gas storage salt cavern under seismic loads. Tunn. Undergr. Space Technol. 2014, 43, 241–252. [Google Scholar] [CrossRef]
- Raju, M.; Khaitan, S.K. Modeling and simulation of compressed air storage in caverns: A case study of the Huntorf plant. Appl. Energy 2012, 89, 474–481. [Google Scholar] [CrossRef]
- Jackson, M.P.A.; Hudec, M.R. Salt Tectonics: Principles and Practice; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Yang, C.; Wang, T.; Li, Y.; Yang, H.; Li, J.; Qu, D.; Xu, B.; Yang, Y.; Daemen, J. Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China. Appl. Energy 2015, 137, 467–481. [Google Scholar] [CrossRef]
- Liu, X.; Shi, X.; Li, Y.; Li, P.; Zhao, K.; Ma, H.; Yang, C. Maximum gas production rate for salt cavern gas storages. Energy 2021, 234, 121211. [Google Scholar] [CrossRef]
- Li, S.-Y.; Urai, J.L. Rheology of rock salt for salt tectonics modeling. Pet. Sci. 2016, 13, 712–724. [Google Scholar] [CrossRef]
- Arson, C. Micro-macro mechanics of damage and healing in rocks. Open Géoméch. 2020, 2, 1–41. [Google Scholar] [CrossRef]
- Warren, J.K. Salt usually seals, but sometimes leaks: Implications for mine and cavern stabilities in the short and long term. Earth-Sci. Rev. 2017, 165, 302–341. [Google Scholar] [CrossRef]
- Shen, X.; Arson, C.; Ding, J.; Chester, F.M.; Chester, J.S. Mechanisms of Anisotropy in Salt Rock Upon Microcrack Propagation. Rock Mech. Rock Eng. 2020, 53, 3185–3205. [Google Scholar] [CrossRef]
- Wang, T.; Li, J.; Jing, G.; Zhang, Q.; Yang, C.; Daemen, J. Determination of the maximum allowable gas pressure for an underground gas storage salt cavern—A case study of Jintan, China. J. Rock Mech. Geotech. Eng. 2019, 11, 251–262. [Google Scholar] [CrossRef]
- BP Company. Statistical Review of World Energy; BP Company: London, UK, 2021. [Google Scholar]
- Mahmoudan, A.; Esmaeilion, F.; Hoseinzadeh, S.; Soltani, M.; Ahmadi, P.; Rosen, M. A geothermal and solar-based multigeneration system integrated with a TEG unit: Development, 3E analyses, and multi-objective optimization. Appl. Energy 2022, 308, 118399. [Google Scholar] [CrossRef]
- Luo, J.; Hou, Z.; Feng, G.; Liao, J.; Haris, M.; Xiong, Y. Effect of Reservoir Heterogeneity on CO2 Flooding in Tight Oil Reservoirs. Energies 2022, 15, 3015. [Google Scholar] [CrossRef]
- Jin, L.; Wojtanowicz, A.K.; Ge, J. Prediction of Pressure Increase during Waste Water Injection to Prevent Seismic Events. Energies 2022, 15, 2101. [Google Scholar] [CrossRef]
- Li, Y.; Yu, H.; Liu, Y.; Zhang, G.; Tang, D.; Jiang, Z. Numerical study on the hydrodynamic and thermodynamic properties of compressed carbon dioxide energy storage in aquifers. Renew. Energy 2020, 151, 1318–1338. [Google Scholar] [CrossRef]
- Soubeyran, A.; Rouabhi, A.; Coquelet, C. Thermodynamic analysis of carbon dioxide storage in salt caverns to improve the Power-to-Gas process. Appl. Energy 2019, 242, 1090–1107. [Google Scholar] [CrossRef]
- Bérest, P. Heat transfer in salt caverns. Int. J. Rock Mech. Min. Sci. 2019, 120, 82–95. [Google Scholar] [CrossRef]
- Böttcher, N.; Görke, U.-J.; Kolditz, O.; Nagel, T. Thermo-mechanical investigation of salt caverns for short-term hydrogen storage. Environ. Earth Sci. 2017, 76, 98. [Google Scholar] [CrossRef]
- Balland, C.; Billiotte, J.; Tessier, B.; Raingeard, A.; Hertz, E.; Hévin, G.; Tribout, D.; Thelier, N.; Hadj-Hassen, F.; Charnavel, Y.; et al. Acoustic monitoring of a thermo-mechanical test simulating withdrawal in a gas storage salt cavern. Int. J. Rock Mech. Min. Sci. 2018, 111, 21–32. [Google Scholar] [CrossRef]
- Bérest, P.; Louvet, F. Aspects of the thermodynamic behavior of salt caverns used for gas storage. Oil Gas Sci. Technol.—Rev. d’IFP Energ. Nouv. 2020, 75, 57. [Google Scholar] [CrossRef]
- Bérest, P.; Brouard, B.; Karimi-Jafari, M.; Van Sambeek, L. Transient behavior of salt caverns—Interpretation of mechanical integrity tests. Int. J. Rock Mech. Min. Sci. 2007, 44, 767–786. [Google Scholar] [CrossRef]
- Blanco-Martín, L.; Rouabhi, A.; Billiotte, J.; Hadj-Hassen, F.; Tessier, B.; Hévin, G.; Balland, C.; Hertz, E. Experimental and numerical investigation into rapid cooling of rock salt related to high frequency cycling of storage caverns. Int. J. Rock Mech. Min. Sci. 2018, 102, 120–130. [Google Scholar] [CrossRef]
- Berest, P. Thermomechanical Aspects of high frequency cycling in salt storage caverns. In Proceedings of the International Gas Union Research Conference, Seoul, Korea, 19–21 October 2011. [Google Scholar]
- Bérest, P.; Brouard, B.; Djizanne, H.; Hévin, G. Thermomechanical effects of a rapid depressurization in a gas cavern. Acta Geotech. 2014, 9, 181–186. [Google Scholar] [CrossRef]
- Sicsic, P.; Bérest, P. Thermal cracking following a blowout in a gas-storage cavern. Int. J. Rock Mech. Min. Sci. 2014, 71, 320–329. [Google Scholar] [CrossRef]
- Ngo, D.; Pellet, F. Numerical modeling of thermally-induced fractures in a large rock salt mass. J. Rock Mech. Geotech. Eng. 2018, 10, 844–855. [Google Scholar] [CrossRef]
- Zapf, D.; Leuger, B.; Donadei, S.; Horváth, P.L.; Zander-Schiebenhoefer, D.; Fleig, S.; Henneberg, M.; Onneken, J.; Gast, S.; Roehling, S.; et al. Development of a Supporting Tool for the Evaluation of Storage Capacity of Caverns for Renewable Energies—Rock Mechanical Design for Hydrogen Storage Caverns. In Proceedings of the 54th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, Golden, CO, USA, 28 June–1 July 2020. [Google Scholar]
- Pudewills, A.; Droste, J. Numerical modeling of the thermomechanical behavior of a large-scale underground experiment. Comput. Struct. 2003, 81, 911–918. [Google Scholar] [CrossRef]
- Serbin, K.; Ślizowski, J.; Urbańczyk, K.; Nagy, S. The influence of thermodynamic effects on gas storage cavern convergence. Int. J. Rock Mech. Min. Sci. 2015, 79, 166–171. [Google Scholar] [CrossRef]
- Hoseinzadeh, S.; Heyns, S. Thermo-structural fatigue and lifetime analysis of a heat exchanger as a feedwater heater in power plant. Eng. Fail. Anal. 2020, 113, 104548. [Google Scholar] [CrossRef]
- Li, W.; Nan, X.; Chen, J.; Yang, C. Investigation of thermal-mechanical effects on salt cavern during cycling loading. Energy 2021, 232, 120969. [Google Scholar] [CrossRef]
- Li, W.; Miao, X.; Yang, C. Failure analysis for gas storage salt cavern by thermo-mechanical modelling considering rock salt creep. J. Energy Storage 2020, 32, 102004. [Google Scholar] [CrossRef]
- Habibi, R.; Moomivand, H.; Ahmadi, M.; Asgari, A. Stability analysis of complex behavior of salt cavern subjected to cyclic loading by laboratory measurement and numerical modeling using LOCAS (case study: Nasrabad gas storage salt cavern). Environ. Earth Sci. 2021, 80, 317. [Google Scholar] [CrossRef]
- Li, W.; Zhu, C.; Han, J.; Yang, C. Thermodynamic response of gas injection-and-withdrawal process in salt cavern for underground gas storage. Appl. Therm. Eng. 2019, 163, 114380. [Google Scholar] [CrossRef]
- AbuAisha, M.; Rouabhi, A. On the validity of the uniform thermodynamic state approach for underground caverns during fast and slow cycling. Int. J. Heat Mass Transf. 2019, 142, 118424. [Google Scholar] [CrossRef]
- Li, W.G.; Chen, W.G.; Ding, S.; Zhang, Y. A method for assessing the dynamic gas capacity and thermodynamic state analysis for salt cavern under operation. J. Energy Storage 2022, 50, 104316. [Google Scholar] [CrossRef]
Lithotypes | Modulus of Elasticity/Gpa | Poisson’s Ratio | |
---|---|---|---|
Overlying mudstone | 10 | 0.3 | 2500 |
Underlying mudstone | 10 | 0.3 | 2500 |
Salt rock | 8 | 0.3 | 2200 |
Mudstone interlayer | 10 | 0.3 | 2500 |
Lithotypes | Coefficient of Thermal Expansion/K−1 | ||
---|---|---|---|
Overlying mudstone | 5.1 | 850 | 1 × 10−4 |
Underlying mudstone | 5.1 | 850 | 1 × 10−4 |
Salt rock | 2.5 | 837 | 5 × 10−5 |
Mudstone interlayer | 5.1 | 850 | 1 × 10−4 |
Time (d) | Pressure (MPa) |
---|---|
1 | 10.72 |
2 | 10.41 |
3 | 10.13 |
4 | 9.89 |
5 | 9.65 |
6 | 9.43 |
7 | 9.22 |
8 | 9.02 |
9 | 8.84 |
10 | 8.65 |
Name | CO2 | CH4 |
---|---|---|
Physical properties | Critical state | No critical state |
Temperature fluctuationOperation | Severe | Gentle |
Thermal stress | Large | Small |
Storage capacity | More | Less |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, W.; Chen, G. A Thermodynamic Model for Carbon Dioxide Storage in Underground Salt Caverns. Energies 2022, 15, 4299. https://doi.org/10.3390/en15124299
Zhang Y, Li W, Chen G. A Thermodynamic Model for Carbon Dioxide Storage in Underground Salt Caverns. Energies. 2022; 15(12):4299. https://doi.org/10.3390/en15124299
Chicago/Turabian StyleZhang, Yi, Wenjing Li, and Guodong Chen. 2022. "A Thermodynamic Model for Carbon Dioxide Storage in Underground Salt Caverns" Energies 15, no. 12: 4299. https://doi.org/10.3390/en15124299
APA StyleZhang, Y., Li, W., & Chen, G. (2022). A Thermodynamic Model for Carbon Dioxide Storage in Underground Salt Caverns. Energies, 15(12), 4299. https://doi.org/10.3390/en15124299