Half-Duplex and Full-Duplex DF Wireless Energy Harvesting Relaying in Rayleigh Fading
Abstract
:1. Introduction
1.1. Related Work
1.2. Motivation and Contributions
- The EH relay system in the Rayleigh fading channel is given. We assume the relay works in the DF protocol. Specifically, the energy of the relay node is only obtained from energy harvesting. The power splitting method is used to harvest energy at the relay side, the information received at the relay is used for transmitting and harvesting energy by adjusting the PS factor. In half-duplex mode, it uses two time slots. The relay processes information and harvests energy in one time slot and sends information to the receiver in the other time slot. In full-duplex mode, the relay finishes the information processing and energy harvesting synchronously.
- According to the channel characteristics of the Rayleigh fading channel, we obtain the outage probability and capacity expressions under the half-duplex and full-duplex EH relay system with the DF protocol.
- We analyze the performance of the full-duplex relay scheme and half-duplex relay scheme be simulation examples, and better system performance is achieved in the full-duplex relay scheme.
1.3. Organization
2. System Model
2.1. Half-Duplex Model
2.2. Full-Duplex Model
3. Outage Probability and Capacity
3.1. Outage Probability and Capacity of Half-Duplex Relay
3.2. Outage Probability and Capacity of Full-Duplex Relay
4. Materials and Methods
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
V2V | Vehicle-to-vehicle |
UAV | Unmanned aerial vehicle |
EH | Energy harvesting |
SWIPT | Simultaneous wireless information and power transfer |
MIMO | Multiple-input multiple-output |
SNR | Signal-to-noise ratio |
DF | Decode-and-forward |
AF | Amplify-and-forward |
PS | Power splitting |
TS | Time switching |
CSI | Channel state information |
IRS | Intelligent reflecting surface |
IoT | Internet of Things |
Appendix A
Appendix B
References
- Lee, Y.L.; Qin, D.; Wang, L.-C.; Sim, G.H. 6G massive radio access networks: Key applications, requirements and challenges. IEEE Open J. Veh. Technol. 2021, 2, 54–66. [Google Scholar] [CrossRef]
- Jiang, H.; Xiong, B.; Zhang, Z.; Zhang, J.; Zhang, H.; Dang, J.; Wu, L. Novel statistical wideband mimo v2v channel modeling using unitary matrix transformation algorithm. IEEE Trans. Wirel. Commun. 2021, 20, 4947–4961. [Google Scholar] [CrossRef]
- Zhang, H.; Hanzo, L. Federated learning assisted multi-uav networks. IEEE Trans. Veh. Technol. 2020, 69, 14104–14109. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Z.; Wang, C.X.; Zhang, J.; Zhang, H. A novel 3d uav channel model for a2g communication environments using aod and aoa estimation algorithms. IEEE Trans. Commun. 2020, 68, 7232–7246. [Google Scholar] [CrossRef]
- Chih-Lin, I.; Han, S.; Bian, S. Energy-efficient 5g for a greener future. Nat. Electron. 2020, 3, 182–184. [Google Scholar]
- Buzzi, S.; Chih-Lin, I.; Klein, T.E.; Poor, H.V.; Yang, C.; Zappone, A. A survey of energy-efficient techniques for 5g networks and challenges ahead. IEEE J. Sel. Areas Commun. 2016, 34, 697–709. [Google Scholar] [CrossRef] [Green Version]
- Mao, B.; Tang, F.; Kawamoto, Y.; Kato, N. Ai models for green communications towards 6G. IEEE Commun. Surv. Tutor. 2021, 24, 210–247. [Google Scholar] [CrossRef]
- Beeby, S.P.; Torah, R.N.; Tudor, M.J.; Glynnejones, P.; O’Donnell, T.; Saha, C.R.; Roy, S. A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 2007, 17, 1257–1265. [Google Scholar] [CrossRef]
- Bhatt, K.; Kumar, S.; Wason, A.; Tripathi, C.C. Energy harvesting technologies: In the horizon of solar energy. In Proceedings of the International Conference on ’Efficient Solar Power Generation and Energy Harvesting, Noida, India, 12–14 February 2019. [Google Scholar]
- Varshney, L.R. Transporting information and energy simultaneously. In Proceedings of the 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, 6–11 July 2008; pp. 1612–1616. [Google Scholar]
- Zhang, R.; Ho, C.K. Mimo broadcasting for simultaneous wireless information and power transfer. IEEE Trans. Wirel. Commun. 2013, 12, 1989–2001. [Google Scholar] [CrossRef] [Green Version]
- Nasir, A.A.; Zhou, X.; Durrani, S.; Kennedy, R.A. Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wirel. Commun. 2013, 12, 3622–3636. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Perlaza, S.M.; Esnaola, I.; Poor, H.V. Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Trans. Wirel. Commun. 2014, 13, 846–860. [Google Scholar] [CrossRef] [Green Version]
- Nasir, A.A.; Zhou, X.; Durrani, S.; Kennedy, R.A. Throughput and ergodic capacity of wireless energy harvesting based df relaying network. In Proceedings of the IEEE International Conference on Communications, Sydney, Australia, 10–14 June 2014. [Google Scholar]
- Huang, G.; Zhang, Q.; Qin, J. Joint time switching and power allocation for multicarrier decode-and-forward relay networks with swipt. IEEE Signal Process. Lett. 2015, 22, 2284–2288. [Google Scholar] [CrossRef]
- Mao, M.; Cao, N.; Chen, Y.; Zhou, Y. Multi-hop relaying using energy harvesting. IEEE Wirel. Commun. Lett. 2015, 4, 565–568. [Google Scholar] [CrossRef] [Green Version]
- Atapattu, S.; Evans, J. Optimal energy harvesting protocols for wireless relay networks. IEEE Trans. Wirel. Commun. 2016, 15, 5789–5803. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, L.L.; Hanzo, L. Compressed sensing improves the performance of subcarrier index-modulation-assisted ofdm. IEEE Access 2016, 4, 7859–7873. [Google Scholar] [CrossRef]
- Li, X.; Xie, Z.; Chu, Z.; Menon, V.G.; Mumtaz, S.; Zhang, J. Exploiting benefits of irs in wireless powered noma networks. IEEE Trans. Green Commun. Netw. 2022, 6, 175–186. [Google Scholar] [CrossRef]
- Duarte, M.; Sabharwal, A. Full-duplex wireless communications using off-the-shelf radios: Feasibility and first results. In Proceedings of the 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2010. [Google Scholar]
- Li, S.; Murch, R.D. An investigation into baseband techniques for single-channel full-duplex wireless communication systems. IEEE Trans. Wirel. Commun. 2014, 13, 4794–4806. [Google Scholar] [CrossRef]
- Duarte, M.; Dick, C.; Sabharwal, A. Experiment-driven characterization of full-duplex wireless systems. IEEE Trans. Wirel. Commun. 2012, 11, 4296–4307. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhang, R.; Cheng, X.; Yang, L. Capacity-enhancing full-duplex relay networks based on power-splitting (ps-)swipt. IEEE Trans. Veh. Technol. 2017, 66, 5445–5450. [Google Scholar] [CrossRef]
- Sharma, P.K.; Garg, P. Performance analysis of full-duplex decode-and-forward cooperative relaying over nakagami-m fading channels. Eur. Trans. Telecommun. 2014, 25, 905–913. [Google Scholar]
- Rabie, K.M.; Adebisi, B.; Surname, M.S. Half-duplex and full-duplex af and df relaying with energy-harvesting in log-normal fading. IEEE Trans. Green Commun. Netw. 2017, 1, 468–480. [Google Scholar] [CrossRef] [Green Version]
- Rabie, K.; Adebisi, B.; Nauryzbayev, G.; Badarneh, O.S.; Li, X.; Alouini, M.S. Full-duplex energy-harvesting enabled relay networks in generalized fading channels. IEEE Wirel. Commun. Lett. 2018, 8, 384–387. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Ruan, C.; Zhang, Z.; Dang, J.; Wu, L.; Mukherjee, M.; da Costa, D.B. A general wideband non-stationary stochastic channel model for intelligent reflecting surface-assisted mimo communications. IEEE Trans. Wirel. Commun. 2021, 20, 5314–5328. [Google Scholar] [CrossRef]
- Jiang, H.; Mukherjee, M.; Zhou, J.; Lloret, J. Channel modeling and characteristics for 6G wireless communications. IEEE Netw. 2021, 35, 296–303. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
bandwidth | 10 MHz |
energy efficiency | 90% |
SNR threshold | 5 db |
−90 db | |
−95 db | |
−95 db |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Han, F.; Zhao, S.; Deng, H. Half-Duplex and Full-Duplex DF Wireless Energy Harvesting Relaying in Rayleigh Fading. Energies 2022, 15, 4220. https://doi.org/10.3390/en15124220
Sun H, Han F, Zhao S, Deng H. Half-Duplex and Full-Duplex DF Wireless Energy Harvesting Relaying in Rayleigh Fading. Energies. 2022; 15(12):4220. https://doi.org/10.3390/en15124220
Chicago/Turabian StyleSun, Hui, Fengxia Han, Shengjie Zhao, and Hao Deng. 2022. "Half-Duplex and Full-Duplex DF Wireless Energy Harvesting Relaying in Rayleigh Fading" Energies 15, no. 12: 4220. https://doi.org/10.3390/en15124220
APA StyleSun, H., Han, F., Zhao, S., & Deng, H. (2022). Half-Duplex and Full-Duplex DF Wireless Energy Harvesting Relaying in Rayleigh Fading. Energies, 15(12), 4220. https://doi.org/10.3390/en15124220