Meat and Bone Meal and the Energy Balance of Winter Oilseed Rape—A Case Study in North-Eastern Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Energy Inputs Analysis
- EItotal—total energy inputs (GJ ha−1),
- EIdiesel—energy inputs associated with diesel fuel consumption (GJ ha−1),
- EImachines—energy inputs associated with the operation of tractors and machines (GJ ha−1),
- EImaterials—energy inputs associated with materials (GJ ha−1),
- EIlabor—energy inputs associated with labor (GJ ha−1).
2.3. Biomass Processing Experiment
2.4. Energy Output Analysis
- LHV—lower heating value of fresh biomass (MJ kg−1),
- HHV—higher heating value of dry biomass (MJ kg−1),
- W—biomass moisture content (%),
- 0.0244—correction coefficient for water vaporization enthalpy (MJ kg−1 per 1% moisture content).
2.5. Energy Gain and the Energy Efficiency Ratio
2.6. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Energy Inputs
3.3. Biomass Yield
3.4. Energy Output
3.5. Energy Gain and Energy Efficiency Ratio
4. Discussion
4.1. Energy Inputs
4.2. Biomass Yield
4.3. Energy Output
4.4. Energy Gain and the Energy Efficiency Ratio
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stolarski, M.J.; Krzyżaniak, M.; Warmiński, K.; Olba-Zięty, E.; Penni, D.; Bordiean, A. Energy efficiency indices for lignocellulosic biomass production: Short rotation coppices versus grasses and other herbaceous crops. Ind. Crops Prod. 2019, 135, 10–20. [Google Scholar] [CrossRef]
- Greinert, A.; Mrówczyńska, M.; Szefner, W. The use of waste biomass from the wood industry and municipal sources for energy production. Sustainability 2019, 11, 3083. [Google Scholar] [CrossRef] [Green Version]
- Pantaleo, A.M.; Camporeale, S.M.; Sorrentino, A.; Miliozzi, A.; Shah, N.; Markides, C.N. Hybrid solar-biomass combined Brayton/organic Rankine-cycle plants integrated with thermal storage: Techno-economic feasibility in selected Mediterranean areas. Renew. Energy 2020, 147, 2913–2931. [Google Scholar] [CrossRef]
- Stegmann, P.; Londo, M.; Junginger, M. The circular bioeconomy: Its elements and role in European bioeconomy clusters, Resour. Conserv. Recycl. 2020, 6, 100029. [Google Scholar] [CrossRef]
- Singh, A.; Nanda, S.; Berruti, F. A review of thermochemical and biochemical conversion of miscanthus to biofuels. In Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals; Nanda, S., Vo, D.V.N., Sarangi, P.K., Eds.; Springer Nature: Singapore, 2020; pp. 195–220. [Google Scholar]
- Bórawski, P.; Bełdycka-Bórawska, A.; Szymańska, E.J.; Jankowski, K.J.; Dubis, B.; Dunn, J.W. Development of renewable energy sources market and biofuels in The European Union. J. Clean. Prod. 2019, 228, 467–484. [Google Scholar] [CrossRef]
- REN21, Renewables 2019 Global Status Report. 2019. Available online: https://www.ren21.net/wp-content/uploads/2019/05/gsr_2019_full_report_en.pdf (accessed on 20 March 2022).
- Flach, B.; Lieberz, S.; Bolla, S. EU-28 Biofuels Annual 2019. USDA Foreign Agricultural Service. Global Agricultural Information Network (GAIN) Report NL9022. 2019. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Biofuels%20Annual_The%20Hague_EU-28_7-15-2019.pdf (accessed on 22 March 2022).
- Macke, Y. China—Peoples Republic of Biofuels Annual 2017. Growing Interest for Ethanol Brightens Prospects. USDA Foreign Agricultural Service. Global Agricultural Information Network (GAIN) Report CH17048. 2017. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Biofuels%20Annual_Beijing_China%20-%20Peoples%20Republic%20of_10-20-2017.pdf (accessed on 22 March 2022).
- Barros, S. Brazil Biofuels Annual 2019. USDA Foreign Agricultural Service. Global Agricultural Information Network (GAIN) Report BR19029. 2019. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Biofuels%20Annual_Sao%20Paulo%20ATO_Brazil_8-10-2018.pdf (accessed on 20 March 2022).
- U.S. EIA (Energy Information Administration). Monthly Biodiesel Production Report. 2020. Available online: https://www.eia.gov/biofuels/biodiesel/production/ (accessed on 19 March 2022).
- FAOSTAT, Food and Agriculture Organization Corporate Statistical Database. 2021. Available online: http://www.fao.org/nr/aquastat (accessed on 22 March 2022).
- Demirbas, A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers. Manag. 2008, 49, 1206–1216. [Google Scholar] [CrossRef]
- Igliński, B.; Piechota, G.; Buczkowski, R. Development of biomass in polish energy sector: An overview. Clean Technol. Environ. Policy 2015, 17, 317–329. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Budzyński, W.S.; Kijewski, Ł. An analysis of energy efficiency in the production of oilseed crops of the family Brassicaceae in Poland. Energy 2015, 81, 674–681. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Sokólski, M. Spring camelina: Effect of mineral fertilization on the energy efficiency of biomass production. Energy 2021, 220, 119731. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Sokólski, M.; Szatkowski, A.; Kozak, M. Crambe-Energy efficiency of biomass production and mineral fertilization. A case study in Poland. Ind. Crops Prod. 2022, 182, 114918. [Google Scholar] [CrossRef]
- Budzyński, W.S.; Jankowski, K.J.; Jarocki, M. An analysis of the energy efficiency of winter rapeseed biomass under different farming technologies. A case study of a large-scale farm in Poland. Energy 2015, 90, 1272–1279. [Google Scholar] [CrossRef]
- Sokólski, M.; Jankowski, K.J.; Załuski, D.; Szatkowski, A. Productivity, energy and economic balance in the production of different cultivars of winter oilseed rape. A case study in north-eastern Poland. Agronomy 2020, 10, 508. [Google Scholar] [CrossRef] [Green Version]
- Growth, D.A.; Sokólski, M.; Jankowski, K.J. A multi-criteria evaluation of the effectiveness of nitrogen and sulfur fertilization in different cultivars of winter rapeseed—Productivity, economic and energy balance. Energies 2020, 13, 4654. [Google Scholar] [CrossRef]
- Rabiee, M.; Majidian, M.; Alizadeh, M.R.; Kavoosi, M. Evaluation of energy use efficiency and greenhouse gas emission in rapeseed (Brassica napus L.) production in paddy fields of Guilan province of Iran. Energy 2021, 217, 119411. [Google Scholar] [CrossRef]
- Taghavifar, H.; Mardani, A. Energy consumption analysis of wheat production in West Azarbayjan utilizing life cycle assessment (LCA). Renew. Energy 2015, 74, 208–213. [Google Scholar] [CrossRef]
- Choudhary, R.L.; Behera, U.K. Resource-use efficiency of wheat: Effect of conservation agriculture and nitrogen management practices in maize (Zea mays)—Wheat (Triticum aestivum) cropping system. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 611–626. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Dubis, B.; Sokólski, M.M.; Załuski, D.; Bórawski, P.; Szempliński, W. Productivity and energy balance of maize and sorghum grown for biogas in a large-area farm in Poland: An 11-yearfield experiment. Ind. Crops Prod. 2020, 148, 112326. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Sokólski, M.M.; Dubis, B.; Załuski, D.; Szempliński, W. Sweet sorghum—Biomass production and energy balance at different levels of agricultural inputs. A six-year field experiment in north-eastern Poland. Eur. J. Agron. 2020, 119, 126119. [Google Scholar] [CrossRef]
- Szempliński, W.; Dubis, D.; Lachutta, K.; Jankowski, K.J. Energy optimization in different production technologies of winter triticale grain. Energies 2021, 14, 1003. [Google Scholar] [CrossRef]
- Özgöz, E.; Altuntaş, E.; Asiltürk, M. Effects of soil tillage on energy use in potato farming in Central Anatolia of Turkey. Energy 2017, 141, 1517–1523. [Google Scholar] [CrossRef]
- Dimitrijević, A.; Gavrilović, M.; Ivanović, S.; Mileusnić, Z.; Miodragović, R.; Todorović, S. Energy use and economic analysis of fertilizer use in wheat and sugar beet production in Serbia. Energies 2020, 13, 2361. [Google Scholar] [CrossRef]
- Greer, K.; Martins, C.; White, M.; Pittelkow, C.M. Assessment of high-input soybean management in the US Midwest: Balancing crop production with environmental performance. Agric. Ecosyst. Environ. 2020, 292, 106811. [Google Scholar] [CrossRef]
- Keshavarz-Afshar, R.; Mohammed, Y.A.; Chen, C. Energy balance and greenhouse gas emissions of dryland camelina as influenced by tillage and nitrogen. Energy 2015, 91, 1057–1063. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, K.J.; Dubis, B.; Budzyński, W.S.; Bórawski, P.; Bułkowska, K. Energy efficiency of crops grown for biogas production in a large-scale farm in Poland. Energy 2016, 109, 277–286. [Google Scholar] [CrossRef]
- Dubis, B.; Jankowski, K.J.; Załuski, D.; Bórawski, P.; Szempliński, W. Biomass production and energy balance of Miscanthus over a period of 11 years: A case study in a large-scale farm in Poland. GCB Bioenergy 2019, 11, 1187–1201. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, K.J.; Dubis, B.; Sokólski, M.M.; Załuski, D.; Bórawski, P.; Szempliński, W. Biomass yield and energy balance of Virginia fanpetals in different production technologies in north-eastern Poland. Energy 2019, 185, 612–623. [Google Scholar] [CrossRef]
- Dubis, B.; Jankowski, K.J.; Sokólski, M.M.; Załuski, D.; Bórawski, P.; Szempliński, W. Biomass yield and energy balance of fodder galega in different production technologies: An 11–year field experiment in a large-area farm in Poland. Renew. Energy 2020, 154, 813–825. [Google Scholar] [CrossRef]
- Dubis, B.; Jankowski, K.J.; Załuski, D.; Sokólski, M.M. The effect of sewage sludge fertilization on the biomass yield of giant miscanthus and the energy balance of the production process. Energy 2020, 206, 11818910. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Dubis, B.; Kozak, M. Sewage sludge and the energy balance of Jerusalem artichoke production—A case study in north-eastern Poland. Energy 2021, 236, 121545. [Google Scholar] [CrossRef]
- Dubis, B.; Szatkowski, A.; Jankowski, K.J. Sewage sludge, digestate, and mineral fertilizer application affects the yield and energy balance of Amur silvergrass. Ind. Crops Prod. 2022, 175, 114235. [Google Scholar] [CrossRef]
- Lewandowska-Czarnecka, A.; Buller, L.S.; Nienartowicz, A.; Piernik, A. Energy and emergy analysis for assessing changes in Polish agriculture since the accession to the European Union. Ecol. Model. 2019, 412, 108819. [Google Scholar] [CrossRef]
- Yang, F.; Yang, M.; Nie, H. Productivity trends of Chinese regions: A perspective from energy saving and environmental regulations. Appl. Energy 2013, 110, 82–89. [Google Scholar] [CrossRef]
- Gong, B. Agricultural reforms and production in China: Changes in provincial production function and productivity in 1978–2015. J. Dev. Econ. 2018, 132, 18–31. [Google Scholar] [CrossRef]
- Rokicki, T.; Perkowska, A.; Klepacki, B.; Bórawski, P.; Bełdycka-Bórawska, A.; Michalski, K. Changes in Energy Consumption in Agriculture in the EU Countries. Energies 2021, 14, 1570. [Google Scholar] [CrossRef]
- Kołodziej, B.; Antonkiewicz, J.; Sugier, D. Miscanthus × giganteus as a biomass feedstock grown on municipal sewage sludge. Ind. Crops Prod. 2016, 81, 72–82. [Google Scholar] [CrossRef]
- Ozdemir, D.; Dede, O.H.; Inan, M.; Turp, S.M. Effects of sewage sludge on energy content and combustion emissions of energy crops. Int. J. Agric. Biol. 2018, 20, 1575–1580. [Google Scholar]
- Gissén, C.; Prade, T.; Kreuger, E.; Nges, I.A.; Rosenqvist, H.; Svensson, S.E.; Lantz, M.; Mattsson, J.E.; Börjesson, P.; Björnsson, P. Comparing energy crops for biogas production e yields, energy input and costs in cultivation using digestate and mineral fertilization. Biomass Bioenergy 2014, 64, 199–210. [Google Scholar] [CrossRef]
- Kyttä, V.; Helenius, J.; Tuomisto, H.L. Carbon footprint and energy use of recycled fertilizers in arable farming. J. Clean. Prod. 2021, 287, 125063. [Google Scholar] [CrossRef]
- Jeng, A.S.; Haraldsen, T.K.; Vagstad, N.; Grønlund, N. Meat and bone meal as nitrogen fertilizer to cereals in Norway. Agric. Food Sci. 2004, 13, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Jeng, A.S.; Haraldsen, T.K.; Grønlund, A.; Pedersen, P.A. Meat and bone meal as nitrogen and phosphorus fertilizer to cereals and ryegrass. Nutr. Cycl. Agroecosys. 2006, 76, 183–191. [Google Scholar] [CrossRef]
- Chen, L.; Kivela, J.; Helenius, J.; Kangas, A. Meat bone meal as fertilizer for barley and oat. Agric. Food Sci. 2011, 20, 235–244. [Google Scholar] [CrossRef]
- Brod, E.; Haraldsen, T.K.; Breland, T.A. Fertilization effects of organic waste resources and bottom wood ash: Results from a pot experiment. Agric. Food Sci. 2012, 21, 332–347. [Google Scholar] [CrossRef] [Green Version]
- Saeid, A.; Labuda, M.; Chojnacka, K.; Górecki, H. Evaluation of utilitarian properties of a new phosphorus biofertilizer. Przem. Chem. 2013, 92, 1311–1314. (In Polish) [Google Scholar]
- Kivela, J.; Chen, L.; Muurinen, S.; Kivijarvi, P.; Hintikainen, V.; Helenius, J. Effect of meat and bone meal as fertilizer on yield and quality of sugar beet and carrot. Agric. Food Sci. 2015, 24, 68–83. [Google Scholar] [CrossRef]
- Brod, E.; Øgaard, A.F.; Krogstad, T.; Haraldsen, T.K.; Frossard, E.; Oberson, A. Drivers of phosphorus uptake by barley following secondary resource application. Front. Nutr. 2016, 3, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogalska, A.; Czapla, J.; Nogalski, Z.; Skwierawska, M.; Kaszuba, M. The effect of increasing doses of meat and bone meal (MBM) on maize (Zea mays L.) grown for grain. Agric. Food Sci. 2012, 21, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Nogalska, A. Changes in the soil nitrogen content caused by direct and residual effect of meat and bone meal. J. Elem. 2013, 18, 659–671. [Google Scholar] [CrossRef]
- Nogalska, A.; Skwierawska, M.; Nogalski, Z.; Kaszuba, M. The effect of increasing doses of meat and bone meal (MBM) applied every second year on maize grown for grain. Chil. J. Agric. Res. 2013, 73, 430–434. [Google Scholar]
- Nogalska, A.; Krzebietke, S.J.; Zalewska, M.; Nogalski, Z. The effect of meat and bone meal (MBM) on the nitrogen and phosphorus content and pH of soil. Agric. Food Sci. 2017, 26, 181–187. [Google Scholar] [CrossRef]
- Jeng, A.S.; Vagstadt, N. Potential nitrogen and phosphorus leaching from soils fertilized with meat and bone meal. Acta Agric. Scand. Sect. B Soil Plant Sci. 2009, 59, 238–245. [Google Scholar] [CrossRef]
- Stępień, A.; Wojtkowiak, K. Variability of mineral nitrogen contents in soil as affected by meat and bone meal used as fertilizer. Chil. J. Agric. Res. 2015, 60, 291–296. [Google Scholar]
- Jastrzębska, M.; Kostrzewska, M.K.; Treder, K.; Jastrzębski, W.P.; Makowski, P. Phosphorus biofertilizers from ash and bone-agronomic evaluation of functional properties. J. Agric. Sci. 2016, 8, 58–70. [Google Scholar] [CrossRef]
- Chojnacka, K.; Gorazda, K.; Witek-Krowiak, A.; Moustakas, K. Recovery of fertilizer nutrient from materials—Contradictions, mistakes and future trends. Renew. Sustain. Energy Rev. 2019, 110, 485–498. [Google Scholar] [CrossRef]
- Mäkelä, P.S.A.; Wasonga, D.O.; Hernandez, A.S.; Santanen, A. Seedling growth and phosphorus uptake in response to different phosphorus sources. Agronomy 2020, 10, 1089. [Google Scholar] [CrossRef]
- Chaves, C.; Canet, R.; Albiach, R.; Marin, J.; Pomares, F. Meat and bone meal: Fertilizing value and rates of nitrogen mineralization. Nutrient and carbon cycling in sustainable plant-soil systems. In Proceedings of the 11th International Conference of the FAO ESCO-RENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture (RAMIRAN), Murcia, Spain, 6–9 October 2004; Volume 1, pp. 177–180. [Google Scholar]
- Nogalska, A.; Zalewska, M. The effect of meat and bone meal (MBM) on phosphorus concentrations in soil and crop plants. Plant Soil Environ. 2013, 59, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Nogalska, A.; Chen, L.; Sienkiewicz, S.; Nogalski, Z. Meat and bone meal as nitrogen and phosphorus supplier to cereals and oilseed rape. Agric. Food Sci. 2014, 23, 19–27. [Google Scholar] [CrossRef]
- Nogalska, A. Meat and bone meal as fertilizer for spring barley. Plant Soil Environ. 2016, 62, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Nogalska, A.; Załuszniewska, A. The effect of meat and bone meal applied without or with mineral nitrogen on macronutrient content and uptake by winter oilseed rape. J. Elem. 2020, 25, 905–915. [Google Scholar] [CrossRef]
- Załuszniewska, A.; Nogalska, A. The effect of meat and bone meal (MBM) on the seed yield and quality of winter oilseed rape. Agronomy 2020, 10, 1952. [Google Scholar] [CrossRef]
- Nogalska, A.; Załuszniewska, A. The effect of meat and bone meal (MBM) on crop yields, nitrogen content and uptake, and soil mineral nitrogen balance. Agronomy 2021, 11, 2307. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 203. [Google Scholar]
- Wójcicki, Z. Equipment, Materials and Energy Inputs in Growth-Oriented Farms; IBMER: Warszawa, Poland, 2000; p. 139. (In Polish) [Google Scholar]
- Fore, S.R.; Porter, P.; Lazarus, W. Net energy balance of small-scale on-farm biodiesel production from canola and soybean. Biomass Bioenergy 2011, 35, 2234–2244. [Google Scholar] [CrossRef]
- TIBCO Statistica, version 13.3.0; Data Analysis Software System; TIBCO Software Inc.: Palo Alto, CA, USA, 2017.
- Cardone, M.; Mazzoncini, M.; Menini, S.; Rocco, V.; Senatore, A.; Seggiani, M.; Vitolo, S. Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: Agronomic evaluation, fuel production by transesterification and characterization. Biomass Bioenergy 2003, 25, 623–636. [Google Scholar] [CrossRef]
- Venturi, P.; Venturi, G. Analysis of energy comparison for crops in European agricultural systems. Biomass Bioenergy 2003, 25, 235–255. [Google Scholar] [CrossRef]
- De Mastro, G.; Grassano, N.; Verdini, L.; Manolio, G.A. A comparison of different systems of rapeseed (Brassica napus L. var. oleifera) cultivation for energy generation. In Proceedings of the Congress Mediterranean Plants, Bari, Italy, 27–28 October 2006; pp. 27–28. (In Italian). [Google Scholar]
- Rathke, G.W.; Diepenbrock, W. Energy balance of winter oilseed rape (Brassica napus L.) cropping as related to nitrogen supply and preceding crop. Eur. J. Agron. 2006, 24, 35–44. [Google Scholar] [CrossRef]
- Firrisa, M.T.; Duren, I.; Voinov, A. Energy efficiency for rapeseed biodiesel production in different farming systems. Energy Effic. 2014, 7, 79–95. [Google Scholar] [CrossRef]
- Schuster, C.; Rathke, G.W. Nitrogen fertilisation of transgenic winter oilseed rape. In Plant Nutrition. Developments in Plant and Soil Sciences; Horst, W.J., Schenk, M.K., Bürkert, A., Claassen, N., Flessa, H., Frommer, W.B., Goldbach, H., Olfs, H.-W., Römheld, V., Sattelmacher, B., et al., Eds.; Spinger: Dordrecht, The Netherlands, 2001; pp. 336–337. [Google Scholar]
- Rathke, G.W.; Behrens, T.; Diepenbrock, W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review. Agric. Ecosyst. Environ. 2006, 117, 80–108. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Hulanicki, P.S.; Krzebietke, S.; Żarczyński, P.; Hulanicki, P.; Sokólski, M.M. Yield and quality of winter oilseed rape in response to different systems of foliar fertilization. J. Elem. 2016, 21, 1017–1027. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Budzyński, W.S.; Załuski, D.; Hulanicki, P.S.; Dubis, B. Using a fractional factorial desing to evaluate the effect of the intensity of agronomic practices on the yield of different winter oilseed rape morphotypes. Field Crops Res. 2016, 188, 50–61. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Sokólski, M.M.; Dubis, B.; Krzebietke, S.; Żarczyński, P.; Hulanicki, P.; Hulanicki, P.S. Yield and quality of winter oilseed rape (Brassica napus L.) seeds in response to foliar application of boron. Agric. Food Sci. 2016, 25, 164–176. [Google Scholar] [CrossRef]
- Nogala-Kałucka, M.; Gogolewski, M.; Jaworek, S.; Siger, A.; Szulczewska, A. Determination of some components as indicators of the quality of rapeseed produced in different regions in Poland. Rośliny Oleiste Oilseed Crops 2002, 23, 447–459. (In Polish) [Google Scholar]
- Weymann, W.; Bottcher, U.; Sieling, K.; Kage, H. Effects of weather conditions during different growth phases on yield formation of winter oilseed rape. Field Crops Res. 2015, 173, 41–48. [Google Scholar] [CrossRef]
- Seleiman, M.; Santanen, A.; Jaakkola, S.; Ekholm, P.; Hartikainen, H.; Stoddard, F.; Mäkelä, P. Biomass yield and quality of bioenergy crops grown with synthetic and organic fertilizers. Biomass Bioenergy 2013, 59, 477–485. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Budzyński, W.S. Energy potential oilseed crops. EJPAU, Agronomy, 6. 2003. Available online: http://www.ejpau.media.pl/volume6/issue2/agronomy/art-03.html (accessed on 12 December 2021).
- Kusek, G.; Ozturk, H.H.; Akdemir, S. An assessment of energy use of different cultivation methods for sustainable rapeseed production. J. Clean. Prod. 2016, 112, 2772–2783. [Google Scholar] [CrossRef]
- Weizsäcker, E.V.; Lovins, A.B.; Lovins, H.L. Doubling welfare, halving resource use. In The New Report to the Club of Roma; Wydawnictwo Rolewski: Toruń, Poland, 1999; p. 292. (In Polish) [Google Scholar]
Farming Operation | Specification |
---|---|
Tillage | skimming (8–10 cm); pre-sow plowing (18–22 cm) |
Seed sowing | cv. SY Saveo (hybrid); seeding date: 25 or 26 August; seeding rate: 50 germinating seeds per m2; row spacing: 20 cm |
Mineral fertilization and meat and bone meal application | according to the experimental design |
Weed control | Butisan Star Max 500 SE at 2.0 dm3 ha−1 (400 g ha−1 metazachlor, 400 g ha−1 dimethenamid-P, 200 g ha−1 quinmerac) |
Pest control | Mospilan 20 SP at 0.12 kg ha−1 (24 g ha−1 acetamiprid); Karate Zeon 050 CS at 0.12 dm3 ha−1 (6 g ha−1 lambda-cyhalothrin); Proteus 110 OD at 0.6 dm3 ha−1 (60 g ha−1 thiachloprid, 6 g ha−1 deltamethrin) |
Pre-harvest herbicide treatment | Reglone 200 SL at 2.5 dm3 ha−1 (500 g ha−1 diquat) |
Harvest of seeds and straw | direct harvest in the fully ripe stage (mid-July) |
Farming Operations | Parameters of Self-Propelled Machine | Parameters of Accompanying Machine | Service Life (h) | Weight (kg) | Performance of Self-Propelled Machine and Accompanying Machine (ha h−1) a | Fuel Consumption (dm3 h−1) a | ||
---|---|---|---|---|---|---|---|---|
Self-Propelled Machine | Accompanying Machine | Self-Propelled Machine | Accompanying Machine | |||||
Disking (5–8 cm) | 294 | 12 m (working width) | 10,000 | 2100 | 15,000 | 12,250 | 10.1 | 50.0 |
Pre-sow plowing (15–18 cm) | 205 | 7 furrow slices | 10,000 | 1400 | 10,550 | 3150 | 1.4 | 30.4 |
Seed sowing | 272 | 9 m (working width) | 10,000 | 1400 | 14,270 | 9625 | 6.2 | 49.5 |
Mineral fertilization | 191 | 36 m (working width) | 10,000 | 2100 | 10,550 | 3500 | 43.5 | 19.1 |
Meat and bone meal application | 272 | 18 m−3 (load capacity) | 10,000 | 700 | 14,270 | 11,000 | 4.2 | 25.0 |
Chemical weed and insect control | 230 | 36 m (working width) | 10,000 | - | 11,000 | - | 20.0 | 19.6 |
Harvest | 220 | 6.6 m (working width) | 10,000 | - | 15,400 | - | 2.5–3.0 b | 40.0 |
Straw baling | 97 | 2.0 m (working width) | 10,000 | 1050 | 4600 | 2950 | 2.7 | 8.5 |
Seed transport | 59 | 10 Mg (carrying capacity) | 10,000 | 1400 | 10,550 | 2600 | 9.4 | 20.4 |
Straw transport | 59 | 10 Mg (carrying capacity) | 10,000 | 700 | 10,550 | 2100 | 3.0 | 20.4 |
Source | Unit | Input | References |
---|---|---|---|
Labor | MJ hour−1 | 80 | [70] |
Tractors | MJ kg−1 | 125 | [70] |
Machines | MJ kg−1 | 110 | [70] |
Diesel oil | MJ kg−1 | 48 | [70] |
Seeds | MJ kg−1 | 12 | [70] |
N | MJ kg−1 | 77 | [70] |
P2O5 | MJ kg−1 | 15 | [70] |
K2O | MJ kg−1 | 10 | [70] |
S | MJ kg−1 | 8.9 | [71] |
Meat and bone meal a | MJ kg−1 | 0.2 | [70] |
Pesticides | MJ kg−1 active ingredient | 300 | [70] |
Parameter | Year | Fertilization | Year × Fertilization | |
---|---|---|---|---|
Dry matter yield (Mg ha−1) | seeds | 9.221 ** | 29.470 ** | 2.113 ns |
straw | 7.912 * | 8.958 ** | 0.648 ns | |
Lower heating value (MJ kg−1) | seeds | 1.405 ns | 0.065 ns | 0.129 ns |
straw | 11.535 ** | 7.065 ** | 1.669 ns | |
Energy output (GJ ha−1) | seeds | 6.453 ** | 27.913 ** | 1.709 ns |
seeds and straw | 7.244 ** | 27.789 ** | 1.611 ns | |
Energy gain (GJ ha−1) | seeds | 4.956 ** | 18.031 ** | 1.306 ns |
seeds and straw | 5.874 * | 13.192 ** | 1.300 ns | |
Energy efficiency ratio | seeds | 1.937 ns | 60.836 ** | 1.725 ns |
seeds and straw | 2.046 ns | 39.098 ** | 0.722 ns |
Agricultural Operation | Fertilization Regime | ||||
---|---|---|---|---|---|
Control | NPK | MBM_1.0 | MBM_1.5 | MBM_2.0 | |
MJ ha−1 | |||||
Tillage | 1891 | 1891 | 1891 | 1891 | 1891 |
Seed sowing | 279 | 279 | 279 | 279 | 279 |
Fertilization | 0 | 13,498 | 9118 | 6215 | 3208 |
Weed control | 356 | 356 | 356 | 356 | 356 |
Pest control | 197 | 197 | 197 | 197 | 197 |
Preparation for harvest, harvest and transport of seeds and straw | 1739 | 1859 | 1859 | 1859 | 1859 |
Total | 4462 | 18,081 | 13,700 | 10,797 | 7790 |
% | |||||
Tillage | 42.4 | 10.5 | 13.8 | 17.5 | 24.3 |
Seed sowing | 6.2 | 1.5 | 2.0 | 2.6 | 3.6 |
Fertilization | 0.0 | 74.7 | 66.6 | 57.6 | 41.2 |
Weed control | 8.0 | 2.0 | 2.6 | 3.3 | 4.6 |
Pest control | 4.4 | 1.1 | 1.4 | 1.8 | 2.5 |
Preparation for harvest, harvest and transport of seeds and straw | 39.0 | 10.3 | 13.6 | 17.2 | 23.9 |
Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Agricultural Operation | Fertilization Regime | ||||
---|---|---|---|---|---|
Control | NPK | MBM_1.0 | MBM_1.5 | MBM_2.0 | |
MJ ha−1 | |||||
Labor | 226 | 239 | 256 | 256 | 254 |
Tractors and machines | 1033 | 1089 | 1591 | 1591 | 1583 |
Fuel | 2652 | 2786 | 3005 | 3005 | 2988 |
Materials: | 551 | 13,967 | 8848 | 5945 | 2965 |
seeds | 72 | 72 | 72 | 72 | 72 |
mineral fertilizers | 0 | 13,417 | 8097 | 5094 | 2014 |
MBM | 0 | 0 | 200 | 300 | 400 |
pesticides | 479 | 479 | 479 | 479 | 479 |
Total | 4462 | 18,081 | 13,700 | 10,797 | 7790 |
% | |||||
Labor | 5.1 | 1.3 | 1.9 | 2.4 | 3.3 |
Tractors and machines | 23.2 | 6.0 | 11.6 | 14.7 | 20.3 |
Fuel | 59.4 | 15.4 | 21.9 | 27.8 | 38.4 |
Materials: | 12.3 | 77.3 | 64.6 | 55.1 | 38.1 |
seeds | 1.6 | 0.4 | 0.5 | 0.7 | 0.9 |
mineral fertilizers | 0.0 | 74.2 | 59.1 | 47.2 | 25.9 |
MBM | 0.0 | 0.0 | 1.5 | 2.8 | 5.1 |
pesticides | 10.7 | 2.6 | 3.5 | 4.4 | 6.1 |
Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Growing Season | Fertilization Regime | |||||
---|---|---|---|---|---|---|
Control | NPK | MBM_1.0 | MBM_1.5 | MBM_2.0 | ||
Seeds (Mg ha−1 DM) | ||||||
2015/2016 | 1.48 | 2.99 | 2.68 | 2.64 | 2.35 | 2.43 a |
2016/2017 | 1.63 | 2.72 | 2.15 | 2.26 | 2.20 | 2.19 b |
1.55 c | 2.86 a | 2.41 b | 2.45 b | 2.27 b | − | |
Straw (Mg ha−1 DM) | ||||||
2015/2016 | 1.83 | 3.48 | 3.53 | 3.33 | 2.61 | 2.96 a |
2016/2017 | 1.79 | 3.28 | 2.82 | 2.87 | 2.73 | 2.70 b |
1.81 b | 3.38 a | 3.17 a | 3.10 a | 2.67 ab | − |
Growing Season | Fertilization Regime | |||||
---|---|---|---|---|---|---|
Control | NPK | MBM_1.0 | MBM_1.5 | MBM_2.0 | ||
Seeds | ||||||
2015/2016 | 23.51 | 23.15 | 23.21 | 23.13 | 23.00 | 23.20 b |
2016/2017 | 23.43 | 23.68 | 23.69 | 23.66 | 23.46 | 23.58 a |
23.47 | 23.41 | 23.45 | 23.40 | 23.23 | − | |
Straw | ||||||
2015/2016 | 12.29 | 12.35 | 11.97 | 12.36 | 12.85 | 12.37 a |
2016/2017 | 12.09 | 12.12 | 12.03 | 12.01 | 12.34 | 12.12 b |
12.19 b | 12.23 b | 12.00 b | 12.18 b | 12.59 a | − |
Growing Season | Fertilization Regime | |||||
---|---|---|---|---|---|---|
Control | NPK | MBM_1.0 | MBM_1.5 | MBM_2.0 | ||
Seeds | ||||||
2015/2016 | 36.74 | 73.09 | 65.61 | 64.74 | 57.29 | 59.50 a |
2016/2017 | 40.16 | 67.81 | 53.70 | 56.40 | 54.27 | 54.47 b |
38.45 c | 70.45 a | 59.66 b | 60.57 b | 55.78 b | − | |
Total biomass (seeds and straw) | ||||||
2015/2016 | 61.27 | 119.92 | 111.72 | 109.66 | 93.73 | 99.26 a |
2016/2017 | 63.87 | 111.20 | 90.71 | 94.13 | 91.20 | 90.22 b |
62.57 c | 115.56 a | 101.21 ab | 101.89 ab | 92.47 b | − |
Growing Season | Fertilization Regime | |||||
---|---|---|---|---|---|---|
Control | NPK | MBM_1.0 | MBM_1.5 | MBM_2.0 | ||
Seeds | ||||||
2015/2016 | 32.20 | 55.46 | 51.91 | 53.95 | 49.50 | 48.61 a |
2016/2017 | 35.70 | 49.90 | 40.00 | 45.61 | 46.48 | 43.54 b |
33.95 c | 52.68 a | 45.96 b | 49.78 b | 47.99 b | − | |
Total biomass (seeds and straw) | ||||||
2015/2016 | 56.73 | 102.29 | 98.02 | 98.86 | 85.94 | 88.37 a |
2016/2017 | 59.41 | 93.30 | 77.01 | 83.33 | 83.41 | 79.29 b |
58.87 b | 97.78 a | 87.51 a | 91.10 a | 84.68 a | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankowski, K.J.; Nogalska, A. Meat and Bone Meal and the Energy Balance of Winter Oilseed Rape—A Case Study in North-Eastern Poland. Energies 2022, 15, 3853. https://doi.org/10.3390/en15113853
Jankowski KJ, Nogalska A. Meat and Bone Meal and the Energy Balance of Winter Oilseed Rape—A Case Study in North-Eastern Poland. Energies. 2022; 15(11):3853. https://doi.org/10.3390/en15113853
Chicago/Turabian StyleJankowski, Krzysztof Józef, and Anna Nogalska. 2022. "Meat and Bone Meal and the Energy Balance of Winter Oilseed Rape—A Case Study in North-Eastern Poland" Energies 15, no. 11: 3853. https://doi.org/10.3390/en15113853
APA StyleJankowski, K. J., & Nogalska, A. (2022). Meat and Bone Meal and the Energy Balance of Winter Oilseed Rape—A Case Study in North-Eastern Poland. Energies, 15(11), 3853. https://doi.org/10.3390/en15113853