Experimental, Kinetic Modeling and Morphologic Study of the Premixed Combustion of Hydrogen/Methane Mixtures
Abstract
:1. Introduction
2. Experimental Specifications
3. Results
3.1. Laminar Burning Velocity Results
3.1.1. Laminar Burning Velocity from the Pressure Register
3.1.2. Laminar Burning Velocity Obtained from Schlieren Images (ul)
3.1.3. Laminar Burning Velocity Obtained from Cantera Kinetic Modeling (LBV)
3.2. Laminar Burning Velocity Comparison
3.3. Flame Morphological Study
3.4. Effect of Hydrogen Content on NOx Emissions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ravi, K.; Mathew, S.; Bhasker, J.P.; Porpatham, E. Gaseous alternative fuels for Spark Ignition Engines—A technical review. J. Chem. Pharm. Sci. 2017, 10, 93–99. [Google Scholar]
- Reyes, M.; Melgar, A.; Pérez, A.; Giménez, B. Study of the cycle-to-cycle variations of an internal combustion engine fuelled with natural gas/hydrogen blends from the diagnosis of combustion pressure. Int. J. Hydrogen Energy 2013, 38, 15477–15487. [Google Scholar] [CrossRef] [Green Version]
- Tinaut, F.; Melgar, A.; Gimenez, B.; Reyes, M. Prediction of performance and emissions of an engine fuelled with natural gas/hydrogen blends. Int. J. Hydrogen Energy 2011, 36, 947–956. [Google Scholar] [CrossRef]
- Gu, X.J.; Haq, M.Z.; Lawes, M.; Woolley, R. Laminar burning velocity and Markstein lengths of methane-air mixtures. Combust. Flame 2000, 121, 41–58. [Google Scholar] [CrossRef]
- Liao, S.; Jiang, D.; Gao, J.; Huang, Z. Measurements of Markstein numbers and laminar burning velocities for natural gas-air mixtures. Energy Fuels 2004, 18, 316–326. [Google Scholar] [CrossRef]
- Karlovitz, B.; Denniston, D., Jr.; Knapschaefer, D.; Wells, F. Studies on Turbulent Flames: A. Flame Propagation Across Velocity Gradients B. Turbulence Measurement in Flames, Proceedings of the Symposium (International) on Combustion, Cambridge, MA, USA, 1–5 September 1952; Elsevier: Amsterdam, The Netherlands, 1953; pp. 613–620. [Google Scholar]
- Yu, G.; Law, C.; Wu, C. Laminar flame speeds of hydrocarbon+ air mixtures with hydrogen addition. Combust. Flame 1986, 63, 339–347. [Google Scholar] [CrossRef] [Green Version]
- Tseng, L.-K.; Ismail, M.; Faeth, G.M. Laminar burning velocities and Markstein numbers of hydrocarbonair flames. Combust. Flame 1993, 95, 410–426. [Google Scholar] [CrossRef] [Green Version]
- Reyes, M.; Tinaut, F.V.; Horrillo, A.; Lafuente, A. Experimental characterization of burning velocities of premixed methane-air and hydrogen-air mixtures in a constant volume combustion bomb at moderate pressure and temperature. Appl. Therm. Eng. 2018, 130, 684–697. [Google Scholar] [CrossRef]
- Naber, J.; Siebers, D.; Di Julio, S.; Westbrook, C. Effects of natural gas composition on ignition delay under diesel conditions. Combust. Flame 1994, 99, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Sung, C.-J.; He, L.; Law, C.K. Dynamics of weakly stretched flames: Quantitative description and extraction of global flame parameters. Combust. Flame 1999, 118, 108–128. [Google Scholar] [CrossRef]
- Hermanns, R.; Konnov, A.; Bastiaans, R.; De Goey, L. Laminar burning velocities of diluted hydrogen-oxygen-nitrogen mixtures. Energy Fuels 2007, 21, 1977–1981. [Google Scholar] [CrossRef]
- Qiao, L.; Kim, C.; Faeth, G. Suppression effects of diluents on laminar premixed hydrogen/oxygen/nitrogen flames. Combust. Flame 2005, 143, 79–96. [Google Scholar] [CrossRef]
- Reyes, M.; Tinaut, F.V. Characterization of the burning velocity of hydrogen/methane blends in a constant volume combustion bomb. In Proceedings of the 2017 8th International Conference on Mechanical and Aerospace Engineering, ICMAE 2017, Prague, Czech Republic, 22–25 July 2017; pp. 257–261. [Google Scholar]
- Milton, B.E.; Keck, J.C. Laminar burning velocities in stoichiometric hydrogen and hydrogen-hydrocarbon gas mixtures. Combust. Flame 1984, 58, 13–22. [Google Scholar] [CrossRef]
- Law, C.K.; Kwon, O. Effects of hydrocarbon substitution on atmospheric hydrogen–air flame propagation. Int. J. Hydrogen Energy 2004, 29, 867–879. [Google Scholar] [CrossRef]
- Halter, F.; Chauveau, C.; Djebaïli-Chaumeix, N.; Gökalp, I. Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane-hydrogen-air mixtures. Proc. Combust. Inst. 2005, 30, 201–208. [Google Scholar] [CrossRef]
- Scholte, T.; Vaags, P. Burning velocities of mixtures of hydrogen, carbon monoxide and methane with air. Combust. Flame 1959, 3, 511–524. [Google Scholar] [CrossRef]
- Liu, Y.; Lenze, B. Investigation of flame-generated turbulence in premixed flames at low and high burning velocities. Exp. Therm. Fluid Sci. 1992, 5, 410–415. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, Y.; Zeng, K.; Liu, B.; Wang, Q.; Jiang, D. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures. Combust. Flame 2006, 146, 302–311. [Google Scholar] [CrossRef]
- Fairweather, M.; Ormsby, M.P.; Sheppard, C.G.W.; Woolley, R. Turbulent burning rates of methane and methane-hydrogen mixtures. Combust. Flame 2009, 156, 780–790. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.; Wang, D.; Yang, J.; Wang, S. A comprehensive study of light hydrocarbon mechanisms performance in predicting methane/hydrogen/air laminar burning velocities. Int. J. Hydrogen Energy 2017, 42, 17260–17274. [Google Scholar] [CrossRef]
- Sun, Z.-Y.; Li, G.-X. Propagation characteristics of laminar spherical flames within homogeneous hydrogen-air mixtures. Energy 2016, 116, 116–127. [Google Scholar] [CrossRef]
- Tinaut, F.; Reyes, M.; Melgar, A.; Giménez, B. Optical characterization of hydrogen-air laminar combustion under cellularity conditions. Int. J. Hydrogen Energy 2019, 44, 12857–12871. [Google Scholar] [CrossRef]
- Sun, Z.-Y.; Li, G.-X.; Li, H.-M.; Zhai, Y.; Zhou, Z.-H. Buoyant unstable behavior of initially spherical lean hydrogen-air premixed flames. Energies 2014, 7, 4938–4956. [Google Scholar] [CrossRef] [Green Version]
- Williams, F.A. Combustion Theory; CRC Press: Boca Raton, FL, USA, 1985. [Google Scholar]
- Matalon, M.; Matkowsky, B.J. Flames as gasdynamic discontinuities. J. Fluid Mech. 1982, 124, 239–259. [Google Scholar] [CrossRef]
- Addabbo, R.; Bechtold, J.; Matalon, M. Wrinkling of spherically expanding flames. Proc. Combust. Inst. 2002, 29, 1527–1535. [Google Scholar] [CrossRef]
- Askari, O.; Wang, Z.; Vien, K.; Sirio, M.; Metghalchi, H. On the flame stability and laminar burning speeds of syngas/O2/He premixed flame. Fuel 2017, 190, 90–103. [Google Scholar] [CrossRef]
- Altantzis, C.; Frouzakis, C.E.; Tomboulides, A.G.; Matalon, M.; Boulouchos, K. Hydrodynamic and thermodiffusive instability effects on the evolution of laminar planar lean premixed hydrogen flames. J. Fluid Mech. 2012, 700, 329–361. [Google Scholar] [CrossRef] [Green Version]
- Hao, D.; Mehra, R.K.; Luo, S.; Nie, Z.; Ren, X.; Fanhua, M. Experimental study of hydrogen enriched compressed natural gas (HCNG) engine and application of support vector machine (SVM) on prediction of engine performance at specific condition. Int. J. Hydrogen Energy 2020, 45, 5309–5325. [Google Scholar] [CrossRef]
- Sagar, S.; Agarwal, A.K. Knocking behavior and emission characteristics of a port fuel injected hydrogen enriched compressed natural gas fueled spark ignition engine. Appl. Therm. Eng. 2018, 141, 42–50. [Google Scholar] [CrossRef]
- Tangöz, S.; Kahraman, N.; Akansu, S.O. The effect of hydrogen on the performance and emissions of an SI engine having a high compression ratio fuelled by compressed natural gas. Int. J. Hydrogen Energy 2017, 42, 25766–25780. [Google Scholar] [CrossRef]
- Tinaut, F.; Melgar, A.; Horrillo, A. Utilization of a Quasi-Dimensional Model for Predicting Pollutant Emissions in SI Engines; SAE Technical Paper 1999-01-0223; SAE International: Warrendale, PA, USA, 1999. [Google Scholar] [CrossRef]
- Tinaut, F.V.; Reyes, M.; Giménez, B.; Pastor, J.V. Measurements of OH* and CH* Chemiluminescence in Premixed Flames in a Constant Volume Combustion Bomb under Autoignition Conditions. Energy Fuels 2011, 25, 119–129. [Google Scholar] [CrossRef]
- Jiang, Y.-H.; Li, G.-X.; Li, F.-S.; Sun, Z.-Y.; Li, H.-M. Experimental investigation of correlation between cellular structure of the flame front and pressure. Fuel 2017, 199, 65–75. [Google Scholar] [CrossRef]
- Kim, W.; Sato, Y.; Johzaki, T.; Endo, T. Experimental study on the onset of flame acceleration due to cellular instabilities. J. Loss Prev. Process Ind. 2019, 60, 264–268. [Google Scholar] [CrossRef]
- Wu, F.; Jomaas, G.; Law, C.K. An experimental investigation on self-acceleration of cellular spherical flames. Proc. Combust. Inst. 2013, 34, 937–945. [Google Scholar] [CrossRef]
- Di Sarli, V.; Benedetto, A.D. Laminar burning velocity of hydrogen-methane/air premixed flames. Int. J. Hydrogen Energy 2007, 32, 637–646. [Google Scholar] [CrossRef]
- El-Sherif, S. Control of emissions by gaseous additives in methane-air and carbon monoxide-air flames. Fuel 2000, 79, 567–575. [Google Scholar] [CrossRef]
- Reyes, M.; Tinaut, F.V.; Giménez, B.; Camaño, A. Combustion and Flame Front Morphology Characterization of H2–CO Syngas Blends in Constant Volume Combustion Bombs. Energy Fuels 2021, 35, 3497–3511. [Google Scholar] [CrossRef]
- Bradley, D.; Gaskell, P.; Gu, X. Burning velocities, Markstein lengths, and flame quenching for spherical methane-air flames: A computational study. Combust. Flame 1996, 104, 176–198. [Google Scholar] [CrossRef]
- Okafor, E.C.; Nagano, Y.; Kitagawa, T. Experimental and theoretical analysis of cellular instability in lean H2-CH4-air flames at elevated pressures. Int. J. Hydrogen Energy 2016, 41, 6581–6592. [Google Scholar] [CrossRef]
- Clavin, P.; Williams, F. Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity. J. Fluid Mech. 1982, 116, 251–282. [Google Scholar] [CrossRef]
- Goodwin, D.G.; Moffat, H.K.; Speth, R.L. Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes; Caltech: Pasadena, CA, USA, 2009; Volume 124. [Google Scholar]
- Gregory, P.; Golden, D.; Frenklach, M.; Moriarty, N.; Eiteneer, B.; Goldenberg, M.; Qin, Z. GRI-Mech 3.0 (Tech. Rep.); UC Berkeley: Berkeley, CA, USA, 2018. [Google Scholar]
- Hermanns, R.T.E.; Kortendijk, J.; Bastiaans, R.; De Goey, L. Laminar burning velocities of methane-hydrogen-air mixtures. Submitt. Combust. Flame 2007. Available online: https://www.researchgate.net/publication/268807456 (accessed on 24 April 2022).
- Khan, A.; Ravi, M.; Ray, A. Experimental and chemical kinetic studies of the effect of H2 enrichment on the laminar burning velocity and flame stability of various multicomponent natural gas blends. Int. J. Hydrogen Energy 2019, 44, 1192–1212. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, X.; Zhang, J.; Hou, X. Automatic generation of a kinetic skeletal mechanism for methane-hydrogen blends with nitrogen chemistry. Int. J. Hydrogen Energy 2018, 43, 3330–3341. [Google Scholar] [CrossRef]
- Li, R.; Luo, Z.; Wang, T.; Cheng, F.; Lin, H.; Zhu, X. Effect of initial temperature and H2 addition on explosion characteristics of H2-poor/CH4/air mixtures. Energy 2020, 213, 118979. [Google Scholar] [CrossRef]
- Nilsson, E.J.; van Sprang, A.; Larfeldt, J.; Konnov, A.A. The comparative and combined effects of hydrogen addition on the laminar burning velocities of methane and its blends with ethane and propane. Fuel 2017, 189, 369–376. [Google Scholar] [CrossRef]
- Hu, E.; Li, X.; Meng, X.; Chen, Y.; Cheng, Y.; Xie, Y.; Huang, Z. Laminar flame speeds and ignition delay times of methane-air mixtures at elevated temperatures and pressures. Fuel 2015, 158, 1–10. [Google Scholar] [CrossRef]
- Konnov, A.A.; Mohammad, A.; Kishore, V.R.; Kim, N.I.; Prathap, C.; Kumar, S. A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+ air mixtures. Prog. Energy Combust. Sci. 2018, 68, 197–267. [Google Scholar] [CrossRef]
- Hu, E.; Huang, Z.; He, J.; Miao, H. Experimental and numerical study on lean premixed methane-hydrogen-air flames at elevated pressures and temperatures. Int. J. Hydrogen Energy 2009, 34, 6951–6960. [Google Scholar] [CrossRef]
- Reyes, M.; Sastre, R.; Tinaut, F.V.; Rodríguez-Fernández, J. Study and characterization of the instabilities generated in expanding spherical flames of hydrogen/methane/air mixtures. Int. J. Hydrogen Energy 2022. [Google Scholar]
- Bougrine, S.; Richard, S.; Nicolle, A.; Veynante, D. Numerical study of laminar flame properties of diluted methane-hydrogen-air flames at high pressure and temperature using detailed chemistry. Int. J. Hydrogen Energy 2011, 36, 12035–12047. [Google Scholar] [CrossRef]
- Coppens, F.; De Ruyck, J.; Konnov, A.A. Effects of hydrogen enrichment on adiabatic burning velocity and NO formation in methane+ air flames. Exp. Therm. Fluid Sci. 2007, 31, 437–444. [Google Scholar] [CrossRef]
- Tanoue, K.; Goto, S.; Shimada, F.; Hamatake, T. Effects of hydrogen addition on stretched premixed laminar methane flames (1st report, effects on laminar burning velocity). Trans Jpn. Soc Mech Eng B 2003, 69, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.-H.; Li, G.-X.; Li, H.-M.; Li, L.; Tian, L.-L. Study on the influence of flame inherent instabilities on crack propagation of expanding premixed flame. Fuel 2018, 233, 504–512. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, Y.; Xu, W.; Liew, K. Laminar burning velocity and cellular instability of 2-butanone-air flames at elevated pressures. Fuel 2022, 316, 123390. [Google Scholar] [CrossRef]
- Miao, H.; Jiao, Q.; Huang, Z.; Jiang, D. Effect of initial pressure on laminar combustion characteristics of hydrogen enriched natural gas. Int. J. Hydrogen Energy 2008, 33, 3876–3885. [Google Scholar] [CrossRef]
- Ma, F.; Wang, Y.; Liu, H.; Li, Y.; Wang, J.; Zhao, S. Experimental study on thermal efficiency and emission characteristics of a lean burn hydrogen enriched natural gas engine. Int. J. Hydrogen Energy 2007, 32, 5067–5075. [Google Scholar] [CrossRef]
- Choudhuri, A.R.; Gollahalli, S. Combustion characteristics of hydrogen-hydrocarbon hybrid fuels. Int. J. Hydrogen Energy 2000, 25, 451–462. [Google Scholar] [CrossRef]
- Guo, H.; Smallwood, G.J.; Liu, F.; Ju, Y.; Gülder, Ö.L. The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow CH4/air premixed flames. Proc. Combust. Inst. 2005, 30, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Huang, Z.; Fang, Y.; Liu, B.; Zeng, K.; Miao, H.; Jiang, D. Combustion behaviors of a direct-injection engine operating on various fractions of natural gas-hydrogen blends. Int. J. Hydrogen Energy 2007, 32, 3555–3564. [Google Scholar] [CrossRef]
- Ó Conaire, M.; Curran, H.J.; Simmie, J.M.; Pitz, W.J.; Westbrook, C.K. A comprehensive modeling study of hydrogen oxidation. Int. J. Chem. Kinet. 2004, 36, 603–622. [Google Scholar] [CrossRef]
- Shudo, T.; Omori, K.; Hiyama, O. NOx reduction and NO2 emission characteristics in rich-lean combustion of hydrogen. Int. J. Hydrogen Energy 2008, 33, 4689–4693. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Huang, Z.; Tang, C.; Miao, H.; Wang, X. Numerical study of the effect of hydrogen addition on methane-air mixtures combustion. Int. J. Hydrogen Energy 2009, 34, 1084–1096. [Google Scholar] [CrossRef]
- Naha, S.; Briones, A.M.; Aggarwal, S.K. Effect of fuel blends on pollutant emissions in flames. Combust. Sci. Technol. 2004, 177, 183–220. [Google Scholar] [CrossRef]
- Reyes, M.; Tinaut, F.V.; Giménez, B.; Pastor, J.V. Effect of hydrogen addition on the OH* and CH* chemiluminescence emissions of premixed combustion of methane-air mixtures. Int. J. Hydrogen Energy 2018, 43, 19778–19791. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes, M.; Sastre, R.; Giménez, B.; Sesma, C. Experimental, Kinetic Modeling and Morphologic Study of the Premixed Combustion of Hydrogen/Methane Mixtures. Energies 2022, 15, 3722. https://doi.org/10.3390/en15103722
Reyes M, Sastre R, Giménez B, Sesma C. Experimental, Kinetic Modeling and Morphologic Study of the Premixed Combustion of Hydrogen/Methane Mixtures. Energies. 2022; 15(10):3722. https://doi.org/10.3390/en15103722
Chicago/Turabian StyleReyes, Miriam, Rosaura Sastre, Blanca Giménez, and Clara Sesma. 2022. "Experimental, Kinetic Modeling and Morphologic Study of the Premixed Combustion of Hydrogen/Methane Mixtures" Energies 15, no. 10: 3722. https://doi.org/10.3390/en15103722
APA StyleReyes, M., Sastre, R., Giménez, B., & Sesma, C. (2022). Experimental, Kinetic Modeling and Morphologic Study of the Premixed Combustion of Hydrogen/Methane Mixtures. Energies, 15(10), 3722. https://doi.org/10.3390/en15103722