An Evaluation of the Performance of a Ground-to-Air Heat Exchanger in Different Ventilation Scenarios in a Single-Family Home in a Climate Characterized by Cold Winters and Hot Summers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
projected area of the element [m2] | |
area of element i [m2] | |
effective collecting area of surface k with a given orientation and tilt angle [m2] | |
overall projected area of the glazed element [m2] | |
adjustment factor for the adjacent unconditioned space with internal heat source l | |
adjustment factor | |
temperature adjustment factor for airflow | |
average specific heat of dry air at constant pressure; 1001 [J/(kg K)] | |
average specific heat of water vapor at constant pressure; 1840 [J/(kg K)] | |
specific humidity [kg/kg] | |
frame area fraction, ratio of the projected frame area to the overall projected area of the glazed element | |
form factor between the building element and the sky | |
shading reduction factor for movable shading provisions | |
shading reduction factor for external obstacles for the solar collective area of surface k | |
total solar energy transmittance of the transparent part of the element | |
enthalpy of fresh air at the GAHE inlet [J/kg] | |
enthalpy of fresh air at the GAHE outlet [J/kg] | |
external radiative heat transfer coefficient [W/m2K] | |
overall heat transfer coefficient [W/K] | |
overall ventilation heat transfer coefficient [W/K] | |
solar irradiance, mean solar irradiation energy during the time step of the calculation, per square meter of collecting area of Surface k [W/m2] | |
length of linear thermal bridge k [m] | |
mass air flow rate [kg/s] | |
vaporization heat of water at 0 °C; 2,500,000 [J/kg] | |
time-average airflow rate of airflow [m3/s] | |
total heat transfer [kWh] | |
heating load of the analyzed building [kWh] | |
total heat gains [kWh] | |
internal heat gains [kWh] | |
solar heat gains [kWh] | |
latent heat transfer [W] | |
total heat transfer by transmission [kWh] | |
total heat transfer by ventilation [kWh] | |
external surface heat resistance of the element [m2K/W] | |
duration of the calculation step [h] | |
air temperature [K] | |
thermal transmittance of the element [W/m2K] | |
thermal transmittance of element i of the building envelope [W/(m2K)] | |
extra heat flow due to thermal radiation to the sky from building element k [W] | |
time-average heat flow rate from solar heat source k [W] | |
time-average heat flow rate from solar heat source l in the adjacent unconditioned space [W] | |
linear thermal transmittance of thermal bridge k [W/(mK)] | |
efficiency of the heat recovery unit | |
air temperature at the GAHE outlet [°C] | |
temperature of the external environment [°C] | |
set-point temperature of the building (for heating or cooling) [°C] | |
arithmetic average of surface temperature and sky temperature [°C] | |
supply temperature from the heat recovery unit [°C] | |
heat capacity of air per volume; 1200 [J/(m3K)] | |
point thermal transmittance of point bridge j [W/K] | |
average difference between external air temperature and apparent sky temperature [°C] | |
emissivity for thermal radiation of the external surface | |
Stefan-Boltzmann constant; 5.67 × 10−8 [W/(m2K4)] |
References
- European Commission. Energy Statistical Country Datasheets. Available online: https://ec.europa.eu/energy/data-analysis/energy-statistical-pocketbook_en (accessed on 10 December 2021).
- Ahmadi, M.M.; Keyhani, A.; Kalogirou, S.A.; Lam, S.S.; Peng, W.; Tabatabaei, M.; Aghbashlo, M. Net-zero exergoeconomic and exergoenvironmental building as new concepts for developing sustainable built environments. Energy Convers. Manag. 2021, 244, 114418. [Google Scholar] [CrossRef]
- Buildings Performance Institute Europe (BPIE). On the Way to a Climate-Neutral Europe—Contributions from the Building Sector to a Strengthened 2030 Climate Target; BPIE: Bishnupur, India, 2020. [Google Scholar]
- European Commission. Renovatin Wave. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_20_1835 (accessed on 9 December 2021).
- Chenari, B.; Carrilho, J.D.; da Silva, M.G. Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review. Renew. Sustain. Energy Rev. 2016, 59, 1426–1447. [Google Scholar] [CrossRef]
- Franco, A.; Schito, E. Definition of optimal ventilation rates for balancing comfort and energy use in indoor spaces using CO2 concentration data. Buildings 2020, 10, 135. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, D.; Tam, V.W.; Tao, Y.; Zhang, G.; Setunge, S.; Shi, L. A critical review of combined natural ventilation techniques in sustainable buildings. Renew. Sustain. Energy Rev. 2021, 141, 110795. [Google Scholar] [CrossRef]
- Cuce, E.; Sher, F.; Sadiq, H.; Cuce, P.M.; Guclu, T.; Besir, A.B. Sustainable ventilation strategies in buildings: CFD research. Sustain. Energy Technol. Assess. 2019, 36, 100540. [Google Scholar] [CrossRef]
- Li, W.; Chen, Q. Design-based natural ventilation cooling potential evaluation for buildings in China. J. Build. Eng. 2021, 41, 102345. [Google Scholar] [CrossRef]
- Poh, H.J.; Chiu, P.H.; Nguyen, H.H.; Xu, G.; Chong, C.S.; Lee, L.T.; Wong, N.C. Airflow Modelling Software Development for Natural Ventilation Design-Green Building Environment Simulation Technology. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 238, p. 012077. [Google Scholar]
- Dabaieh, M.; Serageldin, A.A. Earth air heat exchanger, Trombe wall and green wall for passive heating and cooling in premium passive refugee house in Sweden. Energy Convers. Manag. 2020, 209, 112555. [Google Scholar] [CrossRef]
- Chen, Y.; Tong, Z.; Malkawi, A. Investigating natural ventilation potentials across the globe: Regional and climatic variations. Build. Environ. 2017, 122, 386–396. [Google Scholar] [CrossRef]
- Solgi, E.; Hamedani, Z.; Fernando, R.; Skates, H.; Orji, N.E. A literature review of night ventilation strategies in buildings. Energy Build. 2018, 173, 337–352. [Google Scholar] [CrossRef]
- Landsman, J. Performance, Prediction and Optimization of Night Ventilation across Different Climates; eScholarship Publishing: Irvine, CA, USA, 2016. [Google Scholar]
- Liu, J.; Liu, Y.; Yang, L.; Liu, T.; Zhang, C.; Dong, H. Climatic and seasonal suitability of phase change materials coupled with night ventilation for office buildings in Western China. Renew. Energy 2020, 147, 356–373. [Google Scholar] [CrossRef]
- Yao, R.; Li, B.; Steemers, K.; Short, A. Assessing the natural ventilation cooling potential of office buildings in different climate zones in China. Renew. Energy 2009, 34, 2697–2705. [Google Scholar] [CrossRef]
- Guillén-Lambea, S.; Rodríguez-Soria, B.; Marín, J.M. Review of European ventilation strategies to meet the cooling and heating demands of nearly zero energy buildings (nZEB)/Passivhaus. Comparison with the USA. Renew. Sustain. Energy Rev. 2016, 62, 561–574. [Google Scholar] [CrossRef]
- Laverge, J.; Janssens, A. Heat recovery ventilation operation traded off against natural and simple exhaust ventilation in Europe by primary energy factor, carbon dioxide emission, household consumer price and exergy. Energy Build. 2012, 50, 315–323. [Google Scholar] [CrossRef]
- De Almeida, A.; Fong, J.; Brunner, C.U.; Werle, R.; Van Werkhoven, M. New technology trends and policy needs in energy efficient motor systems-A major opportunity for energy and carbon savings. Renew. Sustain. Energy Rev. 2019, 115, 109384. [Google Scholar] [CrossRef]
- Hati, A.S. A comprehensive review of energy-efficiency of ventilation system using Artificial Intelligence. Renew. Sustain. Energy Rev. 2021, 146, 111153. [Google Scholar]
- Roostaie, S.; Nawari, N.; Kibert, C.J. Sustainability and resilience: A review of definitions, relationships, and their integration into a combined building assessment framework. Build. Environ. 2019, 154, 132–144. [Google Scholar] [CrossRef]
- Peretti, C.; Zarrella, A.; De Carli, M.; Zecchin, R. The design and environmental evaluation of earth-to-air heat exchangers (EAHE). A literature review. Renew. Sustain. Energy Rev. 2013, 28, 107–116. [Google Scholar] [CrossRef]
- Bordoloi, N.; Sharma, A.; Nautiyal, H.; Goel, V. An intense review on the latest advancements of Earth Air Heat Exchangers. Renew. Sustain. Energy Rev. 2018, 89, 261–280. [Google Scholar] [CrossRef]
- Taurines, K.; Girous-Julien, S.; Menezo, C. Energy and thermal analysis of an innovative earth-to-air heat exchanger: Experimental investigations. Energy Build. 2019, 187, 1–15. [Google Scholar] [CrossRef]
- Lapertot, A.; Cuny, M.; Kadoch, B.; Le Métayer, O. Optimization of an earth-air heat exchanger combined with a heat recovery ventilation for residential building needs. Energy Build. 2021, 235, 110702. [Google Scholar] [CrossRef]
- Hegazi, A.A.; Abdelrehim, O.; Khater, A. Parametric Optimization of Earth-Air Heat Exchangers (EAHEs) for Central Air Conditioning. Int. J. Refrig. 2021, 129, 278–289. [Google Scholar] [CrossRef]
- Akbarpoor, A.M.; Poshtiri, A.H.; Biglari, F. Performance analysis of domed roof integrated with earth-to-air heat exchanger system to meet thermal comfort conditions in buildings. Renew. Energy 2021, 168, 1265–1293. [Google Scholar] [CrossRef]
- Li, Y.; Long, T.; Bai, X.; Wang, L.; Li, W.; Liu, S.; Huang, S. An experimental investigation on the passive ventilation and cooling performance of an integrated solar chimney and earth–air heat exchanger. Renew. Energy 2021, 175, 486–500. [Google Scholar] [CrossRef]
- Pouranian, F.; Akbari, H.; Hosseinalipour, S.M. Performance assessment of solar chimney coupled with earth-to-air heat exchanger: A passive alternative for an indoor swimming pool ventilation in hot-arid climate. Appl. Energy 2021, 299, 117201. [Google Scholar] [CrossRef]
- Qin, D.; Liu, J.; Zhang, G. A novel solar-geothermal system integrated with earth–to–air heat exchanger and solar air heater with phase change material—Numerical modelling, experimental calibration and parametrical analysis. J. Build. Eng. 2021, 35, 101971. [Google Scholar] [CrossRef]
- D’Agostino, D.; Greco, A.; Masselli, C.; Minichiello, F. The employment of an earth-to-air heat exchanger as pre-treating unit of an air conditioning system for energy saving: A comparison among different worldwide climatic zones. Energy Build. 2020, 229, 110517. [Google Scholar] [CrossRef] [PubMed]
- Rosa, N.; Soares, N.; Costa, J.J.; Santos, P.; Gervásio, H. Assessment of an earth-air heat exchanger (EAHE) system for residential buildings in warm-summer Mediterranean climate. Sustain. Energy Technol. Assess. 2020, 38, 100649. [Google Scholar] [CrossRef]
- Baglivo, C.; Congedo, P.M.; Laforgia, D. Air cooled heat pump coupled with Horizontal Air-Ground Heat Exchanger (HAGHE) for Zero Energy Buildings in the Mediterranean climate. Energy Procedia 2017, 140, 2–12. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Huang, P.C.; Liang, J.D.; Chiang, Y.C.; Chen, S.L. The in-situ experiment of earth-air heat exchanger for a cafeteria building in subtropical monsoon climate. Renew. Energy 2020, 157, 741–753. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Khan, M.M.K.; Amanullah, M.T.O.; Rasul, M.G.; Hassan, N.M.S. A parametric analysis of the cooling performance of vertical earth-air heat exchanger in a subtropical climate. Renew. Energy 2021, 172, 350–367. [Google Scholar] [CrossRef]
- Wei, H.; Yang, D.; Wang, J.; Du, J. Field experiments on the cooling capability of earth-to-air heat exchangers in hot and humid climate. Appl. Energy 2020, 276, 115493. [Google Scholar] [CrossRef]
- Domingues, A.M.B.; Nobrega, E.S.B.; Ramalho, J.V.A.; Brum, R.S.; Quadros, R.S. Parameter analysis of Earth-air heat exchangers over multi-layered soils in South Brazil. Geothermics 2021, 93, 102074. [Google Scholar] [CrossRef]
- Bisoniya, T.S.; Kumar, A.; Baredar, P. Experimental and analytical studies of earth–air heat exchanger (EAHE) systems in India: A review. Renew. Sustain. Energy Rev. 2013, 19, 238–246. [Google Scholar] [CrossRef]
- Zajch, A.; Gough, W.A.; Yoon, G. Influence of daily temperature behavior on earth-air heat exchangers: A case study from Aichi, Japan. City Environ. Interact. 2020, 8, 100054. [Google Scholar] [CrossRef]
- Woodson, T.; Coulibaly, Y.; Traoré, E.S. Earth-air heat exchangers for passive air conditioning: Case study Burkina Faso. J. Constr. Dev. Ctries. 2012, 17, 21–32. [Google Scholar]
- Chiesa, G.; Zajch, A. Contrasting climate-based approaches and building simulations for the investigation of Earth-to-air heat exchanger (EAHE) cooling sensitivity to building dimensions and future climate scenarios in North America. Energy Build. 2020, 227, 110410. [Google Scholar] [CrossRef]
- Skotnicka-Siepsiak, A. Operation of a tube GAHE in Northeastern Poland in spring and summer—A comparison of real-world data with mathematically modeled data. Energies 2020, 13, 1778. [Google Scholar] [CrossRef] [Green Version]
- Ozgener, L. A review on the experimental and analytical analysis of earth to air heat exchanger (EAHE) systems in Turkey. Renew. Sustain. Energy Rev. 2011, 15, 4483–4490. [Google Scholar] [CrossRef]
- Wei, H.; Yang, D.; Du, J.; Guo, X. Field experiments on the effects of an earth-to-air heat exchanger on the indoor thermal environment in summer and winter for a typical hot-summer and cold-winter region. Renew. Energy 2021, 167, 530–541. [Google Scholar] [CrossRef]
- Pakari, A.; Ghani, S. Performance evaluation of a near-surface earth-to-air heat exchanger with short-grass ground cover: An experimental study. Energy Convers. Manag. 2019, 201, 112163. [Google Scholar] [CrossRef]
- Kaushal, M. Performance analysis of clean energy using geothermal earth to air heat exchanger (GEAHE) in Lower Himalayan Region–Case study scenario. Energy Build. 2021, 248, 111166. [Google Scholar] [CrossRef]
- Kaushal, M. Geothermal cooling/heating using ground heat exchanger for various experimental and analytical studies: Comprehensive review. Energy Build. 2017, 139, 634–652. [Google Scholar] [CrossRef]
- Brata, S.; Tanasa, C.; Stoian, V.; Stoian, D.; Dan, D.; Pacurar, C.; Brata, S. Measured and calculated energy saving on ventilation of a residential building equipped with ground-air heat exchanger. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2019; Volume 111, p. 06074. [Google Scholar]
- Pfafferott, J. Evaluation of earth-to-air heat exchangers with a standardised method to calculate energy efficiency. Energy Build. 2003, 35, 971–983. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Souliotis, M.; Papadaki, M.; Halkos, G.; Paravantis, J.; Makridis, S.; Papaefthimiou, S. Applications of earth-to-air heat exchangers: A holistic review. Renew. Sustain. Energy Rev. 2021, 111921. [Google Scholar] [CrossRef]
- Tahery, D.; Roshandel, R.; Avami, A. An integrated dynamic model for evaluating the influence of ground to air heat transfer system on heating, cooling and CO2 supply in Greenhouses: Considering crop transpiration. Renew. Energy 2021, 173, 42–56. [Google Scholar] [CrossRef]
- Astina, I.M.; Nugraha, M.Y. Numerical simulation of earth-air heat exchanger application for Indonesian simple house air conditioning system. Case Stud. Therm. Eng. 2021, 28, 101371. [Google Scholar] [CrossRef]
- Taurines, K.; Giroux-Julien, S.; Farid, M.; Ménézo, C. Numerical modelling of a building integrated earth-to-air heat exchanger. Appl. Energy 2021, 296, 117030. [Google Scholar] [CrossRef]
- D’Agostino, D.; Esposito, F.; Greco, A.; Masselli, C.; Minichiello, F. The energy performances of a ground-to-air heat exchanger: A comparison among Köppen climatic areas. Energies 2020, 13, 2895. [Google Scholar] [CrossRef]
- PN-EN 12831-1:2017-08; Energy Performance of Buildings—Method for Calculation of the Design Heat Load—Part 1: Space Heating Load, Module M3-3. DAV Publishing: Delhi, India, 2017.
- PN-EN ISO 7730:2006; Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calcula-tion of the PMV and PPD Indices and Local Thermal Comfort Criteria (ISO 7730:2005). ISO: Geneva, Switzerland, 2005.
- ISO 13790:2008; Energy Performance of Buildings—Calculation of Energy Use for Space Heating and Cooling. ISO: Geneva, Switzerland, 2008.
- Liu, Z.; Yu, Z.J.; Yang, T.; Li, S.; El Mankibi, M.; Roccamena, L.; Zhang, G. Designing and evaluating a new earth-to-air heat exchanger system in hot summer and cold winter areas. Energy Procedia 2019, 158, 6087–6092. [Google Scholar] [CrossRef]
- Li, H.; Ni, L.; Yao, Y.; Sun, C. Experimental investigation on the cooling performance of an Earth to Air Heat Exchanger (EAHE) equipped with an irrigation system to adjust soil moisture. Energy Build. 2019, 196, 280–292. [Google Scholar] [CrossRef]
- Raport IMGW-PIB: Klimat Polski. 2020. Available online: https://imgw.pl/sites/default/files/flipbook/klimat_2020/imgw-pib_klimat_polski_2020.html#p=6 (accessed on 17 July 2021).
- Ma, G.; Liu, T.; Shang, S. Improving the climate adaptability of building green retrofitting in different regions: A weight correction system for Chinese national standard. Sustain. Cities Soc. 2021, 69, 102843. [Google Scholar] [CrossRef]
- Bzowska, D. Ryzyko przegrzania budynków izolowanych cieplnie w okresie letnim. Czas. Inżynierii Lądowej Sr. Archit. 2016, 63, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Kisilewicz, T. Wpływ Izolacyjnych, Dynamicznych i Spektralnych Właściwości Przegród na Bilans Cieplny Budynków Energooszczędnych; Wydawnictwo Politechniki Krakowskiej: Kraków, Polska, 2008. [Google Scholar]
- Choi, Y.H.; Song, D.; Seo, D.; Kim, J. Analysis of the variable heat exchange efficiency of heat recovery ventilators and the associated heating energy demand. Energy Build. 2018, 172, 152–158. [Google Scholar] [CrossRef]
- Estrada, E.; Labat, M.; Lorente, S.; Rocha, L.A. The impact of latent heat exchanges on the design of earth air heat exchangers. Appl. Therm. Eng. 2018, 129, 306–317. [Google Scholar] [CrossRef]
- Niu, F.; Yu, Y.; Yu, D.; Li, H. Heat and mass transfer performance analysis and cooling capacity prediction of earth to air heat exchanger. Appl. Energy 2015, 137, 211–221. [Google Scholar] [CrossRef]
Month | [Wh/m2] | Average Hourly Energy Demand in the Ventilation System [Wh/m2] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variant 1 | Variant 2 | Variant 3 | Variant 4 | |||||||
Jan | 10.46 | 9.19 | 3.12 | 5.73 | 0.91 | 7.45 | 0.83 | 3.13 | 5.16 | 0.58 |
Feb | 9.07 | 9.09 | 2.80 | 5.52 | 0.91 | 7.35 | 0.82 | 2.80 | 4.97 | 0.55 |
Mar | 5.68 | 7.45 | 2.40 | 4.42 | 0.52 | 6.24 | 0.69 | 2.43 | 3.98 | 0.44 |
Apr | −1.28 | 4.38 | 1.70 | 2.75 | 0.00 | 3.94 | 0.44 | 1.70 | 2.48 | 0.28 |
May | −4.46 | 2.31 | 0.48 | 1.05 | 0.00 | 2.08 | 0.23 | 0.45 | 0.98 | 0.12 |
June | −8.41 | 0.37 | 0.03 | 0.25 | 0.00 | 0.34 | 0.04 | 0.03 | 0.18 | 0.05 |
July | −7.76 | 0.21 | 0.13 | 0.12 | 0.00 | 0.19 | 0.02 | 0.13 | 0.04 | 0.03 |
Aug | −6.99 | 0.14 | 0.14 | 0.05 | 0.00 | 0.13 | 0.01 | 0.13 | 0.00 | 0.03 |
Sept | −2.66 | 2.12 | 1.01 | 1.04 | 0.00 | 1.91 | 0.21 | 1.03 | 0.93 | 0.11 |
Oct | 1.78 | 4.20 | 1.90 | 2.46 | 0.00 | 3.78 | 0.42 | 1.90 | 2.22 | 0.25 |
Nov | 6.97 | 6.43 | 2.59 | 3.80 | 0.08 | 5.71 | 0.63 | 2.60 | 3.42 | 0.38 |
Dec | 9.17 | 7.88 | 3.30 | 4.49 | 0.19 | 6.93 | 0.77 | 3.30 | 4.04 | 0.45 |
Month | Average Hourly Energy Demand in the Ventilation System [Wh/m2] | |||
---|---|---|---|---|
Heating Load | Cooling Load | |||
Sensible Heat | Latent Heat | Sensible Heat | Latent Heat | |
Jan | 3.12 | 2.94 | 0.00 | 0.00 |
Feb | 2.80 | 2.39 | 0.00 | 0.00 |
Mar | 2.40 | 2.36 | 0.00 | 0.00 |
Apr | 1.74 | 1.27 | −0.04 | −0.08 |
May | 0.73 | 0.73 | −0.25 | −0.31 |
June | 0.49 | 0.50 | −0.46 | −0.61 |
July | 0.45 | 0.45 | −0.32 | −0.43 |
Aug | 0.51 | 0.59 | −0.37 | −0.39 |
Sept | 1.12 | 1.17 | −0.11 | −0.10 |
Oct | 1.90 | 1.79 | 0.00 | 0.00 |
Nov | 2.59 | 2.28 | 0.00 | 0.00 |
Dec | 3.30 | 2.63 | 0.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skotnicka-Siepsiak, A. An Evaluation of the Performance of a Ground-to-Air Heat Exchanger in Different Ventilation Scenarios in a Single-Family Home in a Climate Characterized by Cold Winters and Hot Summers. Energies 2022, 15, 105. https://doi.org/10.3390/en15010105
Skotnicka-Siepsiak A. An Evaluation of the Performance of a Ground-to-Air Heat Exchanger in Different Ventilation Scenarios in a Single-Family Home in a Climate Characterized by Cold Winters and Hot Summers. Energies. 2022; 15(1):105. https://doi.org/10.3390/en15010105
Chicago/Turabian StyleSkotnicka-Siepsiak, Aldona. 2022. "An Evaluation of the Performance of a Ground-to-Air Heat Exchanger in Different Ventilation Scenarios in a Single-Family Home in a Climate Characterized by Cold Winters and Hot Summers" Energies 15, no. 1: 105. https://doi.org/10.3390/en15010105
APA StyleSkotnicka-Siepsiak, A. (2022). An Evaluation of the Performance of a Ground-to-Air Heat Exchanger in Different Ventilation Scenarios in a Single-Family Home in a Climate Characterized by Cold Winters and Hot Summers. Energies, 15(1), 105. https://doi.org/10.3390/en15010105