What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece
Abstract
1. Introduction
2. Literature Review
2.1. Modeling Approaches
2.2. Relevant Work
3. Experimental Design
3.1. NECP Scenarios
3.2. Models
- 1
- GDP growth: Provided by Greece’s MoF and Organization for Economic Co-operation and Development (OECD) [77] for Greece and RoW, respectively.
- 2
- 3
- Endowments growth:
- Capital growth: Capital accumulation, K, is calculated as proposed by Fouré et al. [78]:
4. Results
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BAU | Business as Usual |
CGE | Computable General Equilibrium |
CI | Confidence Interval |
CPI | Consumer Price Index |
CRES | Center for Renewable Energy Sources and Saving |
DSGE | Dynamic Stochastic General Equilibrium |
EC | European Commission |
ETS | Emissions Trading System |
EU | European Union |
GDP | Gross Domestic Product |
GFEC | Gross Final Energy Consumption |
GFElC | Gross Final Electricity Consumption |
GHG | Greenhouse Gases |
GIEC | Gross Inland Energy Consumption |
GTAP | Global Trade Analysis Project |
IEA | International Energy Agency |
IIASA | International Institute for Applied Systems Analysis |
MoF | Ministry of Finance |
NECP | National Energy and Climate Plan |
OECD | Organization for Economic Co-operation and Development |
PPI | Producer Price Index |
Primes | Price-Induced Market Equilibrium System |
RES | Renewable Energy Sources |
RoW | Rest of World |
SAM | Social Accounting Matrix |
SSP | Shared Socioeconomic Pathway |
TIMES | Integrated MARKAL-EFOM2 System |
References
- European Commission. 2050 Long-Term Strategy. 2020. Available online: https://ec.europa.eu/clima/policies/strategies/2050_en (accessed on 4 September 2020).
- European Council. Governance of the Energy Union: Council Confirms Deal Reached with the European Parliament. 2020. Available online: https://www.consilium.europa.eu/en/press/press-releases/2018/06/29/governance-of-the-energy-union-council-confirms-deal-reached-with-the-european-parliament/ (accessed on 20 September 2020).
- European Commission. National Energy and Climate Plans (NECPs). 2020. Available online: https://ec.europa.eu/energy/topics/energy-strategy/national-energy-climate-plans_en (accessed on 7 May 2020).
- D’Alessandro, S.; Luzzati, T.; Morroni, M. Erratum to “Energy transition towards economic and environmental sustainability: Feasible paths and policy implications”. J. Clean. Prod. 2010, 18, 531. [Google Scholar] [CrossRef]
- Fermeglia, M.; Bevilacqua, P.; Cafaro, C.; Ceci, P.; Fardelli, A. Legal Pathways to Coal Phase-Out in Italy in 2025. Energies 2020, 13, 5605. [Google Scholar] [CrossRef]
- Kotze, R.; Brent, A.C.; Musango, J.; de Kock, I.; Malczynski, L.A. Investigating the Investments Required to Transition New Zealand’s Heavy-Duty Vehicles to Hydrogen. Energies 2021, 14, 1646. [Google Scholar] [CrossRef]
- European Commission. European Green Deal: What Role Can Taxation Play? 2020. Available online: https://ec.europa.eu/taxation_customs/commission-priorities-2019-24/european-green-deal-what-role-can-taxation-play_en (accessed on 7 May 2020).
- Roser, M. Why did Renewables Become Thus, Cheap Thus, Fast? In addition, What Can We do to Use This Global Opportunity for Green Growth? 2020. Available online: https://ourworldindata.org/cheap-renewables-growth#:~:text=In%20most%20places%20in%20the,declines%20by%20the%20same%20fraction (accessed on 1 December 2020).
- Parry, I.; Bento, A. Tax deductions, environmental policy, and the ’double dividend’ hypothesis. J. Environ. Econ. Manag. 2000, 39, 67–96. [Google Scholar] [CrossRef]
- Freire-González, J. Environmental taxation and the double dividend hypothesis in CGE modelling literature: A critical review. J. Policy Model. 2018, 40, 194–223. [Google Scholar] [CrossRef]
- Wesseh, P.K., Jr.; Lin, B. Environmental policy and ‘double dividend’ in a transitional economy. Energy Policy 2019, 134. [Google Scholar] [CrossRef]
- Chepeliev, M.; Diachuk, O.; Podolets, R. Transition towards High Share of Renewables in Ukraine: Linked Energy System and CGE Model Approach, 2018. Available online: https://ssrn.com/abstract=3231225 (accessed on 10 August 2020).
- Köhlin, G.; Pattanayak, S.; Sills, E.; Mattsson, E.; Ostwald, M.; Salas, A.; Ternald, D. In Search of Double Dividends from Climate Change Interventions Evidence from Forest Conservation and Household Energy Transitions. 2015. Available online: https://eba.se/rapporter/in-search-of-double-dividends-from-climate-change-interventions-evidence-from-forest-conservation-and-household-energy-transitions/3226/ (accessed on 9 September 2020).
- Newell, P.; Mulvaney, D. The political economy of the ‘just transition’. Geogr. J. 2013, 179, 132–140. [Google Scholar] [CrossRef]
- Alexander, S.; Floyd, J. The Political Economy of Deep Decarbonization: Tradable Energy Quotas for Energy Descent Futures. Energies 2020, 13, 4304. [Google Scholar] [CrossRef]
- HMEE. National Energy and Climate Plan; Hellenic Ministry of Environment and Energy. 2019. Available online: https://ec.europa.eu/energy/sites/ener/files/el_final_necp_main_en.pdf (accessed on 30 August 2020).
- Nikas, A.; Neofytou, H.; Karamaneas, A.; Koasidis, K.; Psarras, J. Sustainable and socially just transition to a post-lignite era in Greece: A multi-level perspective. Energy Sources Part B Econ. Plan. Policy 2020, 15, 513–544. [Google Scholar] [CrossRef]
- Roser, M. Coal Types. 2021. Available online: https://energyeducation.ca/encyclopedia/Coal_types (accessed on 24 March 2021).
- PPC. Mines. 2020. Available online: https://www.dei.gr/en/i-dei/i-etairia/tomeis-drastiriotitas/oruxeia (accessed on 23 November 2020).
- Dedi, D.V.; Mavroeidis-Kamperis, P. Natural Gas in Greece: The Bridge to Decarbonization. 2020. Available online: https://energypress.eu/natural-gas-in-greece-the-bridge-to-decarbonization/ (accessed on 30 September 2020).
- HAEE. Greek Energy Market, Report 2019. Available online: https://www.haee.gr/media/4858/haees-greek-energy-market-report-2019-upload-version.pdf (accessed on 23 November 2020).
- Marinakis, V.; Flamos, A.; Stamtsis, G.; Georgizas, I.; Maniatis, Y.; Doukas, H. The Efforts towards and Challenges of Greece’s Post-Lignite Era: The Case of Megalopolis. Sustainability 2020, 12, 575. [Google Scholar] [CrossRef]
- European Commission. Employment and Social Developments in Europe 2019. Available online: https://op.europa.eu/en/publication-detail/-/publication/747fefa1-d085-11e9-b4bf-01aa75ed71a1/language-en (accessed on 10 January 2021).
- Kumbaroğlu, G.; Canaz, C.; Deason, J.; Shittu, E. Profitable Decarbonization through E-Mobility. Energies 2020, 13, 4042. [Google Scholar] [CrossRef]
- Greenleaf, J.; Harmsen, R.; Angelini, T.; Green, D.; Williams, A.; Rix, O.; Lefevre, N.; Blyth, W. Analysis of Impacts of Climate Change Policies on Energy Security–Final Report. 2009. Available online: https://ec.europa.eu/environment/integration/energy/pdf/cces.pdf (accessed on 5 October 2020).
- Nikas, A.; Doukas, H.; Papandreou, A. A Detailed Overview and Consistent Classification of Climate-Economy Models; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–54. [Google Scholar] [CrossRef]
- Doukas, H.; Nikas, A.; González-Eguino, M.; Arto, I.; Anger-Kraavi, A. From integrated to integrative: Delivering on the paris agreement. Sustainability 2018, 10, 2299. [Google Scholar] [CrossRef]
- Herbst, A.; Toro, F.; Reitze, F.; Jochem, E. Introduction to energy systems modelling. Swiss J. Econ. Stat. 2012, 148, 111–135. [Google Scholar] [CrossRef]
- Helgesen, P.I. Top-Down and Bottom-Up: Combining Energy System Models and Macroeconomic General Equilibrium Models. 2013. Available online: https://www.ntnu.no/documents/7414984/202064323/2013-12-11+Linking+models_444.pdf/4252b320-d68d-43df-81b8-e8c72ea1bfe1 (accessed on 15 October 2020).
- Herbst, M.; Toro, F.; Reitze, F.; Eberhard, J. Bridging Macroeconomic and Bottom up Energy Models-the Case of Efficiency in Industry. 2012. Available online: https://www.eceee.org/library/conference_proceedings/eceee_Industrial_Summer_Study/2012/3-matching-policies-and-drivers-policies-and-directives-to-drive-industrial-efficiency/bridging-macroeconomic-and-bottom-up-energy-models-the-case-of-efficiency-in-industry/ (accessed on 15 October 2020).
- Catenazzi, G. Advances in Techno-Economic Energy Modeling. Costs, Dynamics and Hybrid Aspects. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2009. [Google Scholar] [CrossRef]
- Burfisher, M.E. Introduction to Computable General Equilibrium Models, 2nd ed.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef]
- Perali, F.; Scandizzo, P. DSGE vs. CGE Models: Modelling Sustainable Development in a Computable General Equilibrium Context. 2020. Available online: https://siecon3-607788.c.cdn77.org/sites/siecon.org/files/media_wysiwyg/297-perali-scandizzo_0.pdf (accessed on 30 December 2020).
- Khansari, F. General Equilibrium Models and Uncertainty in Environmental Policies: Implications for Australia. 2015. Available online: https://ro.uow.edu.au/cgi/viewcontent.cgi?article=1954&context=buspapers (accessed on 10 December 2020).
- Nilsson, L. Reflections on the economic modelling of free trade agreements. J. Glob. Econ. Anal. 2018, 3, 156–186. [Google Scholar] [CrossRef]
- Lucas, R.J. Econometric policy evaluation: A critique. Carnegie Rochester Conf. Ser. Public Policy 1976, 1, 19–46. [Google Scholar] [CrossRef]
- Krook-Riekkola, A.; Berg, C.; Ahlgren, E.; Söderholm, P. Challenges in top-down and bottom-up soft-linking: Lessons from linking a Swedish energy system model with a CGE model. Energy 2017, 141, 803–817. [Google Scholar] [CrossRef]
- Katris, A.; Calvillo-Muñoz, C.; Figus, G.; Riddoch, F.; Turner, K.; McGregor, P.; Lecca, P.; Swales, K. Workshop on Linking CGE and TIMES Models: Lessons Learned and Next, Steps; 2017; International Public Policy Institute Policy Brief, University of Strathclyde, 2017. An “Occasional Paper” Published by the University of Strathclyde’s International Public Policy Institute (IPPI); Available online: https://pureportal.strath.ac.uk/en/publications/workshop-on-linking-cge-and-times-models-lessons-learned-and-next (accessed on 10 September 2020).
- LEFEVRE, J. Hybridization Challenges in Energy-Economy Integrated Models and Representation of the Low Carbon Transition: An Application to the Brazilian Case. Theses, Université Paris Saclay, 2016. Available online: https://hal.archives-ouvertes.fr/tel-01685944 (accessed on 10 September 2020).
- IEA-ETSAP. IEA-ETSAP Optimization Modeling Documentation. 2020. Available online: https://iea-etsap.org/index.php/etsap-tools/model-generators/times (accessed on 7 May 2020).
- E3MLab. The PRIMES Model. 2020. Available online: http://www.e3mlab.eu/e3mlab/index.php?option=com_content&view=category&id=35 (accessed on 7 May 2020).
- Fortes, P.; Pereira, A.M.; Pereira, R.M.; Seixas, J. Integrated Technological-Economic Modeling Platform for Energy and Climate Policy Analysis. Working Papers 148, Department of Economics, College of William and Mary, 2014. Available online: https://ideas.repec.org/p/cwm/wpaper/148.html (accessed on 15 September 2020).
- Bye, B.; Espegren, K.; Fæhn, T.; Rosendahl, E.; Rosnes, O. Energy Technology and Energy Economics: Analysis of Energy Policy in Two Different Model Traditions, 2016. IAEE. Available online: https://www.iaee.org/proceedings/article/14502 (accessed on 15 September 2020).
- Glynn, J.; Fortes, P.; Krook-Riekkola, A.; Labriet, M.; Vielle, M.; Kypreos, S.; Lehtilä, A.; Mischke, P.; Dai, H.; Gargiulo, M.; et al. Economic Impacts of Future Changes in the Energy System—Global Perspectives. In Informing Energy and Climate Policies Using Energy Systems Models: Insights from Scenario Analysis Increasing the Evidence Base; Springer International Publishing: Cham, Switzerland, 2015; pp. 333–358. [Google Scholar] [CrossRef]
- Labriet, M.; Drouet, L.; Vielle, M.; Loulou, R.; Kanudia, A.; Haurie, A. Assessment of the Effectiveness of Global Climate Policies Using Coupled Bottom-up and Top-down Models. Working Papers 2015.23, Fondazione Eni Enrico Mattei, 2015. Available online: https://ssrn.com/abstract=2580216 (accessed on 15 September 2020).
- Delzeit, R.; Beach, R.; Bibas, R.; Britz, W.; Chateau, J.; Freund, F.; Lefevre, J.; Schuenemann, F.; Sulser, T.; Valin, H.; et al. Linking Global CGE Models with Sectoral Models to Generate Baseline Scenarios: Approaches, Challenges, and Opportunities. J. Glob. Econ. Anal. 2020, 5, 162–195. [Google Scholar] [CrossRef]
- Doukas, H.; Nikas, A. Decision support models in climate policy. Eur. J. Oper. Res. 2020, 280, 1–24. [Google Scholar] [CrossRef]
- Nikas, A.; Gambhir, A.; Trutnevyte, E.; Koasidis, K.; Lund, H.; Thellufsen, J.; Mayer, D.; Zachmann, G.; Miguel, L.; Ferreras-Alonso, N.; et al. Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe. Energy 2021, 215. [Google Scholar] [CrossRef]
- Adams, P. Interpretation of results from CGE models such as GTAP. J. Policy Model. 2005, 27, 941–959. [Google Scholar] [CrossRef]
- Forouli, A.; Gkonis, N.; Nikas, A.; Siskos, E.; Doukas, H.; Tourkolias, C. Energy efficiency promotion in Greece in light of risk: Evaluating policies as portfolio assets. Energy 2019, 170, 818–831. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Vicidomini, M.; Song, J.; Pantaleo, A.M.; Abdelhady, S.; Shaban, A.; Markides, C.N. Energy and Economic Assessment of Energy Efficiency Options for Energy Districts: Case Studies in Italy and Egypt. Energies 2021, 14, 1012. [Google Scholar] [CrossRef]
- Nasirov, S.; O’Ryan, R.; Osorio, H. Decarbonization Tradeoffs: A Dynamic General Equilibrium Modeling Analysis for the Chilean Power Sector. Sustainability 2020, 12, 8248. [Google Scholar] [CrossRef]
- Gonzalez-Salazar, M.; Langrock, T.; Koch, C.; Spieß, J.; Noack, A.; Witt, M.; Ritzau, M.; Michels, A. Evaluation of Energy Transition Pathways to Phase out Coal for District Heating in Berlin. Energies 2020, 13, 6394. [Google Scholar] [CrossRef]
- Chepeliev, M. Simulation and Economic Impact Evaluation of Ukrainian Electricity Market Tariff Policy Shift, 2014. Available online: https://ssrn.com/abstract=2608980 (accessed on 20 August 2020).
- Renner, M.; Garcia-Banos, C.; Nagpal, D.; Khalid, A. Renewable Energy and Jobs—Annual Review 2018. Available online: https://www.irena.org/publications/2018/May/Renewable-Energy-and-Jobs-Annual-Review-2018#:~:text=The%20industry%20created%20more%20than,million%20for%20the%20first%20time (accessed on 20 December 2020).
- Ram, M.; Aghahosseini, A.; Breyer, C. Job creation during the global energy transition towards 100% renewable power system by 2050. Technol. Forecast. Soc. Chang. 2020, 151, 119682. [Google Scholar] [CrossRef]
- Rutovitz, J.; Dominish, E.; Downes, J. Calculating Global Energy Sector Jobs: 2015 Methodology, 2015. Available online: http://hdl.handle.net/10453/43718 (accessed on 20 September 2020).
- Almutairi, K.; Thoma, G.; Durand-Morat, A. Ex-ante analysis of economic, social and environmental impacts of large-scale renewable and nuclear energy targets for global electricity generation by 2030. Sustainability 2018, 10, 2884. [Google Scholar] [CrossRef]
- EIA, U. The International Energy Outlook 2016 (IEO2016). 2017. Available online: https://www.eia.gov/outlooks/ieo/ (accessed on 2 December 2020).
- Truong, T.P.; Kemfert, C.; Burniaux, J.M. GTAP-E: An Energy-Environmental Version of the GTAP Model with Emission Trading; Number 668 in DIW Discussion Papers; Deutsches Institut für Wirtschaftsforschung (DIW): Berlin, Germany, 2007; Available online: http://hdl.handle.net/10419/18400 (accessed on 20 September 2020).
- Hertel, T.W. Global Trade Analysis: Modeling and Applications; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar] [CrossRef]
- Grottera, C.; Rovere, E.L.L.; Wills, W.; Pereira, A.O., Jr. The role of lifestyle changes in low-emissions development strategies: An economy-wide assessment for Brazil. Clim. Policy 2020, 20, 217–233. [Google Scholar] [CrossRef]
- Lefevre, J. A description of the IMACLIM-BR Model: A Modeling Framework to Assess Climate and Energy Policy in Brazil. CIRED Working Papers hal-01685947, HAL, 2016. Available online: https://ideas.repec.org/p/hal/ciredw/hal-01685947.html (accessed on 15 December 2020).
- Antosiewicz, M.; Nikas, A.; Szpor, A.; Witajewski-Baltvilks, J.; Doukas, H. Pathways for the transition of the Polish power sector and associated risks. Environ. Innov. Soc. Transitions 2020, 35, 271–291. [Google Scholar] [CrossRef]
- Bukowski, M.; Kowal, P. Large Scale, Multi-Sector DSGE Model as a Climate Policy Assessment Tool—Macroeconomic Mitigation Options (MEMO) Model for Poland. IBS Working Papers 3/2010, Instytut Badan Strukturalnych, 2010. Available online: https://ideas.repec.org/p/ibt/wpaper/wp032010.html (accessed on 20 December 2020).
- NGFS. Guide to Climate Scenario Analysis for Central Banks and Supervisors. Available online: https://www.ngfs.net/sites/default/files/medias/documents/ngfs_guide_scenario_analysis_final.pdf (accessed on 20 November 2020).
- Makridakis, S.; Assimakopoulos, V.; Spiliotis, E. Objectivity, reproducibility and replicability in forecasting research. Int. J. Forecast. 2018, 34, 835–838. [Google Scholar] [CrossRef]
- Eurostat. Glossary: Energy Intensity. 2020. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Energy_intensity (accessed on 7 May 2020).
- HMEE. National Energy and Climate Plan; Hellenic Ministry of Environment and Energy (Draft Version). 2019. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/ec_courtesy_translation_el_necp.pdf (accessed on 30 August 2020).
- Aguiar, A.; Narayanan, B.; McDougall, R. An Overview of the GTAP 9 Data Base. J. Glob. Econ. Anal. 2016, 1, 181–208. [Google Scholar] [CrossRef]
- Aguiar, A.; Chepeliev, M.; Corong, E.L.; McDougall, R.; van der Mensbrugghe, D. The GTAP data base: Version 10. J. Glob. Econ. Anal. 2019, 4, 1–27. [Google Scholar] [CrossRef]
- Koutsandreas, D.; Spiliotis, E.; Petropoulos, F.; Assimakopoulos, V. On the selection of forecasting accuracy measures. J. Oper. Res. Soc. 2021. [Google Scholar] [CrossRef]
- Narayanan, B.; McDougall, R. Guide to the GTAP Data Base. 2015. Available online: https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=4819 (accessed on 1 December 2020).
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.; Fujimori, S.; Bauer, N.; Calvin, K. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Rogelj, J.; Popp, A.; Calvin, K.V.; Luderer, G.; Emmerling, J.; Gernaat, D.; Fujimori, S.; Strefler, J. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Chang. 2018, 8, 325–332. [Google Scholar] [CrossRef]
- Gidden, M.J.; Riahi, K.; Smith, S.J.; Fujimori, S.; Luderer, G.; Kriegler, E.; van Vuuren, D.P.; van den Berg, M. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 2019, 12, 1443–1475. [Google Scholar] [CrossRef]
- OECD. OECD Economic Outlook, Volume 2020 Issue 2; OECD Publishing: Paris, France, 2020; p. 264. [Google Scholar] [CrossRef]
- Fouré, J.; Bénassy-Quéré, A.; Fontagné, L. The Great Shift: Macroeconomic Projections for the World Economy at the 2050 Horizon. Working Papers hal-00962464, HAL, 2012. Available online: https://ideas.repec.org/p/hal/wpaper/hal-00962464.html (accessed on 10 September 2020).
- ELSTAT. Gross Fixed Capital Formation. 2020. Available online: https://www.statistics.gr/en/statistics/-/publication/SEL81/- (accessed on 30 June 2020).
- Worldbank. Gross Fixed Capital Formation (Constant 2010 US$). 2020. Available online: https://data.worldbank.org/indicator/NE.GDI.FTOT.KD (accessed on 30 June 2020).
- Eurostat. Glossary: Gross Inland Energy Consumption. 2018. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Gross_inland_energy_consumption (accessed on 7 May 2020).
- Arndt, C.; Pearson, K.R. How to Carry out Systematic Sensitivity Analysis via Gaussian Quadrature and GEMPACK. 1998. Available online: https://www.copsmodels.com/ftp/gpssatp3/tp3.pdf (accessed on 10 July 2020).
- Pearson, K.; Horridge, M. Hands-On Computing with RunGTAP and WinGEM to Introduce GTAP and GEMPACK (GTAP Resource No. 1638). 2005. Available online: https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=1638 (accessed on 10 July 2020).
- Horridge, J.M.; Jerie, M.; Mustakinov, D.; Schiffmann, F. GEMPACK Manual, GEMPACK Software. 2018. Available online: https://www.copsmodels.com/gpmanual.htm (accessed on 10 July 2020).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Schreyer, P.; Pilat, D. Measuring productivity. OECD Econ. Stud. 2001, 33, 127–170. [Google Scholar]
- Pegkas, P. The Effect of Government Debt and Other Determinants on Economic Growth: The Greek Experience. Economies 2018, 6, 10. [Google Scholar] [CrossRef]
- Doukas, H.; Nikas, A.; Stamtsis, G.; Tsipouridis, I. The Green Versus Green Trap and a Way Forward. Energies 2020, 13, 5473. [Google Scholar] [CrossRef]
- Forouli, A.; Nikas, A.; Van de Ven, D.J.; Sampedro, J.; Doukas, H. A multiple-uncertainty analysis framework for integrated assessment modelling of several sustainable development goals. Environ. Model. Softw. 2020, 131. [Google Scholar] [CrossRef]
- Haldane, A.; Turrell, A. Drawing on different disciplines: Macroeconomic agent-based models. J. Evol. Econ. 2019, 29, 39–66. [Google Scholar] [CrossRef]
- Nikas, A.; Stavrakas, V.; Arsenopoulos, A.; Doukas, H.; Antosiewicz, M.; Witajewski-Baltvilks, J.; Flamos, A. Barriers to and consequences of a solar-based energy transition in Greece. Environ. Innov. Soc. Transit. 2020, 35, 383–399. [Google Scholar] [CrossRef]
- European Union. 2030 Climate & Energy Framework: Greenhouse Gas Emissions—Raising the Ambition. 2020. Available online: https://ec.europa.eu/clima/policies/strategies/2030_en (accessed on 10 January 2020).
Variable | Final NECP | 2030 Targets Draft NECP | Final Targets Aspiration |
---|---|---|---|
RES Share in Gross Final Energy Consumption | ≥35% | 31% | Increased ambitious (core EU target 32%) |
RES Share in Gross Final Electricity Consumption | 61–64% | 56% | — |
Final Energy Consumption | Mtoe (≥38% vs. 2007 predictions) | 18.1 Mtoe; 17.3 Mtoe without ambient heat (32% vs. 2007 predictions) | Increased ambitious (core EU target 32.5 %) |
Share of Lignite in Power Generation | 0% | 16.50% | — |
Reduced Greenhouse Gases | ≥42%
vs. 1990; ≥56% vs. 2005 | 33% vs. 1990; 49% vs. 2005 | Same level of ambitious (overcompliance in non-ETS sectors) |
Additional Investments | 43.8 billion | 34.7 billion | — |
Year | Results | Input | ||||
---|---|---|---|---|---|---|
Energy Intensity (ktoe/ mil. Euro) | GIEC (ktoe) | GDP mil. Euro | Population (Million People) | |||
Draft NECP | Final NECP | Draft NECP | Final NECP | |||
2020 | 0.12 | 0.12 | 23,442.94 | 23,442.94 | 200,082 | 10.691 |
2025 | 0.10 | 0.10 | 21,246.34 | 22,149.48 | 221,662 | 10.538 |
2030 | 0.09 | 0.08 | 21,429.67 | 20,657.10 | 244,733 | 10.368 |
Variables | Growth Rates (%) | |||
---|---|---|---|---|
Greece | RoW | |||
2020–2025 | 2020–2030 | 2020–2025 | 2020–2030 | |
GDP | +10.79 | +22.32 | +16.19 | +33.42 |
Population | −1.43 | −3.02 | +4.48 | +8.55 |
Labor force | −2.08 | −4.37 | +4.43 | +8.05 |
Capital | −4.78 | −5.59 | +15.22 | +32.76 |
Variables | Shock Rates (%) | |||
---|---|---|---|---|
Rapid Delignitization | Mild Delignitization | |||
2020–2025 | 2020–2030 | 2020–2025 | 2020–2030 | |
Primary Energy Production | −5.52 | −11.88 | −9.37 | −8.59 |
Energy Imports | −5.52 | −11.88 | −9.37 | −8.59 |
Energy Exports | +5.52 | +11.88 | +9.37 | +8.59 |
Total Investments | +73 | +152 | +57 | +121 |
Country | Final NECP Target Scenario Shocks (%) Over 2020–2030 | Macroeconomic Impacts (% Deviation vs. BAU Over 2020–2030) | |||||||
---|---|---|---|---|---|---|---|---|---|
GHG Emissions [×] | RES Share (%) | Consumption | Investments (% of GDP per Annum) | GDP | Employment | Income | |||
GFEC | GFElC | Final | Primary | ||||||
Austria | ≈ [#] | +11 | +5 | −2 | −3 | +3.9 | +0.3 | - | |
Croatia | ≈−5 | +7.8 | +16.8 | −2 | −23 | +3.6 | +2.5 [⊕] | +2.4 [⊗] | - |
Cyprus | −19 | +8.1 | +14.5 | −3 | −4 | +2.26 | +0.25 | +0.25 | - |
Finland | −25 | +10 | +12 | −6 | −3 | +0.8 | −0.59 | −0.15 | - |
France | −29 | +10 | - | −8 | −8 | +2.44 | +2 | +400 K [∓] | - |
Germany | −27 | +19.2 | +19.7 | −12 | −18 | +0.8 | +1.5 | +0.5 [*] | +1.7 [*] |
Greece | −26 | +15.3 | +31.8 | −2.5 | −17 | +2 | - | +59.4 K [∓] | - |
Italy | −19 | +11 | +18.8 | −11 | −12 | +6.75 | −0.18 | +1170 K [∓] | - |
Latvia | −18 [#] | +10 | +16.8 | −11 | −11 | +2.65 | - | +10.7 K [∓] | - |
Lithuania | −24 | +15 | +15 | −19 | −19 | - | +1.72 | +1.56 | +2.1 |
Luxembourg | −38 [#] | +14 | +21.7 | −22 | - | +0.72 | +1.1 | +0.3 | −0.9 |
Malta | +14 [□] | +2.2 | ≈+1 | ≈+30 | ≈+30 | +4 | - | +200 [∓] | - |
Poland | −13 | +8 | +9.7 | −6 | −5 | +3 | 0 | 0 | - |
Romania | −4 | +6.3 | +8.4 | +4 | - | +5.76 | >+30 | - | +34 [*] |
Slovakia | −17 | +5.2 | +4.9 | −0.43 | +0.51 | +0.8 | +0.9 | - | - |
Slovenia | −21 | +2 | +9.8 | −4 | −6 | +4.14 | +2.4 | +1.39 [*] | +2.26 [*] |
Spain | −31 | +21.8 | +32 | −15 | −19 | +1.82 | +2.1 | +1.7 [*] | - |
Sweden | - | +16 | - | −13 | −14 | - | −0.35 [*] | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koutsandreas, D.; Spiliotis, E.; Doukas, H.; Psarras, J. What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece. Energies 2021, 14, 2235. https://doi.org/10.3390/en14082235
Koutsandreas D, Spiliotis E, Doukas H, Psarras J. What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece. Energies. 2021; 14(8):2235. https://doi.org/10.3390/en14082235
Chicago/Turabian StyleKoutsandreas, Diamantis, Evangelos Spiliotis, Haris Doukas, and John Psarras. 2021. "What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece" Energies 14, no. 8: 2235. https://doi.org/10.3390/en14082235
APA StyleKoutsandreas, D., Spiliotis, E., Doukas, H., & Psarras, J. (2021). What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece. Energies, 14(8), 2235. https://doi.org/10.3390/en14082235