Special Issue “Numerical Simulation of Wind Turbines”
Funding
Conflicts of Interest
References
- Papi, F.; Nocentini, A.; Ferrara, G.; Bianchini, A. On the Use of Modern Engineering Codes for Designing a Small Wind Turbine: An Annotated Case Study. Energies 2021, 14, 1013. [Google Scholar] [CrossRef]
- Yang, X.; Foti, D.; Kelley, C.; Maniaci, D.; Sotiropoulos, F. Wake Statistics of Different-Scale Wind Turbines under Turbulent Boundary Layer Inflow. Energies 2020, 13, 3004. [Google Scholar] [CrossRef]
- Lipian, M.; Czapski, P.; Obidowski, D. Fluid-Structure Interaction Numerical Analysis of a Small, Urban Wind Turbine Blade. Energies 2020, 13, 1832. [Google Scholar] [CrossRef]
- Lanzafame, R.; Mauro, S.; Messina, M.; Brusca, S. Development and Validation of CFD 2D Models for the Simulation of Micro H-Darrieus Turbines Subjected to High Boundary Layer Instabilities. Energies 2020, 13, 5564. [Google Scholar] [CrossRef]
- Balduzzi, F.; Zini, M.; Molina, A.C.; Bartoli, G.; De Troyer, T.; Runacres, M.C.; Ferrara, G.; Bianchini, A. Understanding the Aerodynamic Behavior and Energy Conversion Capability of Small Darrieus Vertical Axis Wind Turbines in Turbulent Flows. Energies 2020, 13, 2936. [Google Scholar] [CrossRef]
- Mansour, H.; Afify, R. Design and 3D CFD Static Performance Study of a Two-Blade IceWind Turbine. Energies 2020, 13, 5356. [Google Scholar] [CrossRef]
- Sobczak, K.; Obidowski, D.; Reorowicz, P.; Marchewka, E. Numerical Investigations of the Savonius Turbine with Deformable Blades. Energies 2020, 13, 3717. [Google Scholar] [CrossRef]
- Papi, F.; Cappugi, L.; Salvadori, S.; Carnevale, M.; Bianchini, A. Uncertainty Quantification of the Effects of Blade Damage on the Actual Energy Production of Modern Wind Turbines. Energies 2020, 13, 3785. [Google Scholar] [CrossRef]
- Santo, G.; Peeters, M.; Van Paepegem, W.; Degroote, J. Fluid–Structure Interaction Simulations of a Wind Gust Impacting on the Blades of a Large Horizontal Axis Wind Turbine. Energies 2020, 13, 509. [Google Scholar] [CrossRef] [Green Version]
- Van Kuik, G.A.; Peinke, J.; Nijssen, R.; Lekou, D.; Mann, J.; Sørensen, J.N.; Ferreira, C.; van Wingerden, J.W.; Schlipf, D.; Gebraad, P.; et al. Long-term research challenges in wind energy—A research agenda by the European Academy of Wind Energy. Wind Energy Sci. 2016, 1, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Lei, L.; Dowell, E.; Zeng, P. An Experimental Study on the Actuator Line Method with Anisotropic Regularization Kernel. Energies 2020, 13, 977. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yang, X. Evaluation of Actuator Disk Model Relative to Actuator Surface Model for Predicting Utility-Scale Wind Turbine Wakes. Energies 2020, 13, 3574. [Google Scholar] [CrossRef]
- Perez-Becker, S.; Marten, D.; Nayeri, C.N.; Paschereit, C.O. Implementation and Validation of an Advanced Wind Energy Controller in Aero-Servo-Elastic Simulations Using the Lifting Line Free Vortex Wake Model. Energies 2021, 14, 783. [Google Scholar] [CrossRef]
- Tang, H.; Lei, Y.; Li, X. An Acoustic Source Model for Applications in Low Mach Number Turbulent Flows, Such as a Large-Scale Wind Turbine Blade. Energies 2019, 12, 4596. [Google Scholar] [CrossRef] [Green Version]
- Sy, M.S.; Abuan, B.E.; Danao, L.A.M. Aerodynamic Investigation of a Horizontal Axis Wind Turbine with Split Winglet Using Computational Fluid Dynamics. Energies 2020, 13, 4983. [Google Scholar] [CrossRef]
- Wiśniewski, P.; Balduzzi, F.; Buliński, Z.; Bianchini, A. Numerical Analysis on the Effectiveness of Gurney Flaps as Power Augmentation Devices for Airfoils Subject to a Continuous Variation of the Angle of Attack by Use of Full and Surrogate Models. Energies 2020, 13, 1877. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrara, G.; Bianchini, A. Special Issue “Numerical Simulation of Wind Turbines”. Energies 2021, 14, 1616. https://doi.org/10.3390/en14061616
Ferrara G, Bianchini A. Special Issue “Numerical Simulation of Wind Turbines”. Energies. 2021; 14(6):1616. https://doi.org/10.3390/en14061616
Chicago/Turabian StyleFerrara, Giovanni, and Alessandro Bianchini. 2021. "Special Issue “Numerical Simulation of Wind Turbines”" Energies 14, no. 6: 1616. https://doi.org/10.3390/en14061616
APA StyleFerrara, G., & Bianchini, A. (2021). Special Issue “Numerical Simulation of Wind Turbines”. Energies, 14(6), 1616. https://doi.org/10.3390/en14061616