Viability and Sustainability Assessment of Bioenergy Value Chains on Underutilised Lands in the EU and Ukraine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site-Specific Sustainability Assessment
2.1.1. Site Selection
2.1.2. Agronomic and Techno-Economic Assessment
2.2. Market and Policy Barriers
2.3. Roll-Out for an Automated and Pan-European Sustainability Assessment
2.3.1. Pan-European MUC Land Mapping
- results from related EU and international projects that have already produced valuable tools, maps, and information, which addresses sustainable bioenergy production on MUC lands;
- data provided by governments as well as public and private stakeholders and;
- results of remote sensing-based classification of underutilised lands in terms of time series analysis to complete the gaps.
2.3.2. STEN Tool
2.3.3. BIOPLAT-EU webGIS Tool Development
3. Results
3.1. Site-Specific Sustainability Assessments
3.1.1. Italy
3.1.2. Ukraine
- Abandoned agricultural lands, which are lands that are no longer needed for food and feed production or for other purposes;
- Degraded or low productive lands, which are lands that are not suitable anymore for conventional commercial agriculture.
3.1.3. Germany
- Scenario 1: Supply of miscanthus chips to the three existing biomass power plants at average market prices
- Scenario 2: Supply of miscanthus chips to a newly built Combined Heat and Power (CHP) biomass plant for combined heat and power production
- Scenario 3: Supply of grass silage for one of the operating nearby biogas plants at usual market prices
- Scenario 4: Retrofitting an existing biogas plant by integrating a new grass biorefinery module
3.2. Market and Policy Barriers
3.3. Roll-Out for an Automated and Pan-European Sustainability Assessment
3.3.1. Pan-European MUC Land Mapping
3.3.2. BIOPLAT-EU webGIS Tool Functionalities
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EC. The Renewable Energies Directive. Available online: https://ec.europa.eu/energy/topics/renewable-energy/renewable-energy-directive/overview_en (accessed on 2 February 2021).
- EC. Brief on Biomass for Energy in the European Union. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC109354/biomass_4_energy_brief_online_1.pdf (accessed on 2 February 2021).
- EC. National Renewable Energy Action Plans 2020. Available online: https://ec.europa.eu/energy/topics/renewable-energy/national-renewable-energy-action-plans-2020_en?redir=1 (accessed on 2 February 2021).
- IRENA; IEA; FAO. Bioenergy for Sustainable Development. Available online: https://www.ieabioenergy.com/wp-content/uploads/2017/01/BIOENERGY-AND-SUSTAINABLE-DEVELOPMENT-final-20170215.pdf (accessed on 2 February 2021).
- IPCC. Global Warming of 1.5 °C. Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (accessed on 2 February 2021).
- EC. The Revised Renewable Energy Directive. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/technical_memo_renewables.pdf (accessed on 2 February 2021).
- Pour, N.; Webley, P.A.; Cook, P.J. A Sustainability Framework for Bioenergy with Carbon Capture and Storage (BECCS) Technologies. Energy Procedia 2017, 114, 6044–6056. [Google Scholar] [CrossRef]
- Jin, E.; Sutherland, J.W. A Proposed Integrated Sustainability Model for a Bioenergy System. Procedia CIRP 2016, 48, 358–363. [Google Scholar] [CrossRef] [Green Version]
- Buchholz, T.S.; Volk, T.A.; Luzadis, V.A. A participatory system approach to modelling social, economic and ecological components of bioenergy. Energy Policy 2007, 35, 6084–6094. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Bentley, Y.; Geng, X.; Liu, X. Sustainability Assessment of Bioenergy from a Global Perspective: A Review. Sustainability 2018, 10, 2739. [Google Scholar] [CrossRef] [Green Version]
- GBEP. The Global Bioenergy Partnership Sustainability Indicators for Bioenergy. Available online: http://www.globalbioenergy.org/fileadmin/user_upload/gbep/docs/Indicators/The_GBEP_Sustainability_Indicators_for_Bioenergy_FINAL.pdf (accessed on 2 February 2021).
- Scott, A.; Page-Dumroese, D. Wood Bioenergy and Soil Productivity Research. BioEnergy Res. 2016, 9, 507–517. [Google Scholar] [CrossRef]
- Pedroli, B.; Elbersen, B.; Frederiksen, P.; Grandin, U.; Heikkilä, R.; Krogh, P.H.; Izakovičová, Z.; Johansen, A.; Meiresonne, L.; Spijker, J. Is energy cropping in Europe compatible with biodiversity?—Opportunities and threats to biodiversity from land-based production of biomass for bioenergy purposes. Biomass Bioenergy 2013, 55, 73–86. [Google Scholar] [CrossRef]
- GNESD. Bioenergy—The Potential for Rural Development and Poverty Alleviation. Available online: https://www.researchgate.net/publication/264232675_Bioenergy_The_potential_for_rural_development_and_poverty_alleviation/link/53d2bfed0cf228d363e955d0/download (accessed on 2 February 2021). [CrossRef]
- Zolin, M. Diversification of Household Income in Rural Areas: Opportunities and Risks of Biomass Energy. Open Geogr. J. 2011, 4, 16–28. [Google Scholar] [CrossRef] [Green Version]
- The FORBIO Project: Fostering Sustainable Feedstock Production for Advanced Biofuels on Underutilised Land in Europe. Available online: https://forbio-project.eu/ (accessed on 14 December 2020).
- The BIOPLAT-EU Project: Promoting Sustainable Use of Underutilised Lands for Bioenergy Production through a Web-Based Platform for Europe. Available online: https://bioplat.eu/ (accessed on 14 December 2020).
- FORBIO: D3.2—Report on the Design of the Sustainability Indicator Set. Available online: https://forbio-project.eu/assets/content/publication/D3.2_Inventory_of_sustainability_indicators.pdf (accessed on 14 December 2020).
- Aru, A.; Baladaccini, P.; Delogu, G.; Dessena, M.A.; Madrau, S.; Melis, R.T.; Vacca, A. Nota Illustrativa Alla Carta Dei Suoli Della Sardegna, Scala 1:250.000; Dipartimento di Scienze della Terra Università di Cagliari: Cagliari, Italy, 1991. (In Italian) [Google Scholar]
- ARPA SARDEGNA—Piano di Disinquinamento per il Risanamento del Territorio del Sulcis Iglesiente. Available online: http://www.sardegnaambiente.it/index.php?xsl=612&s=149955&v=2&c=4586&idsito=21 (accessed on 14 December 2020). (In Italian).
- Comune di Portoscuso Ordinanza N.9 del 6 marzo 2014—Divieto di commercializzazione o distribuzione a qualunque titolo di alimenti derivanti dalle produzioni nel Comune di Portoscuso. Available online: https://gruppodinterventogiuridicoweb.files.wordpress.com/2014/03/ordinanza-n-9-del-6-marzo-2014-divieto-di-commercializzazione-di-alimenti.pdf (accessed on 14 December 2020). (In Italian).
- Pulighe, G.; Bonati, G.; Fabiani, S.; Barsali, T.; Lupia, F.; Vanino, S.; Nino, P.; Arca, P.; Roggero, P.P. Assessment of the Agronomic Feasibility of Bioenergy Crop Cultivation on Marginal and Polluted Land: A GIS-Based Suitability Study from the Sulcis Area, Italy. Energies 2016, 9, 895. [Google Scholar] [CrossRef]
- Zubets, M.V. Scientific bases of agricultural production in the area of Polissia and Western Ukraine. Acad. Agrar. Sci. 2010, 944. Available online: http://ir.znau.edu.ua/bitstream/123456789/8317/11/nauk_osnovi_agro_vir_v_zoni_polissya_2010_944.pdf (accessed on 2 February 2021).
- Raychuk, L.A. Some aspects of Agricultural Manufacturing at the radioactively contaminated land of Kiev Polissia. Scientific Bulletin of National Forestry University of Ukraine. Ecol. Environ. 2015, 25, 161–166. [Google Scholar]
- Statistical Yearbook of Kyiv Oblast in 2015; Department of Statistics in Kiev Region: Kyiv, Ukraine, 2016.
- FORBIO: D2.5—Agronomic feasibility study in Ukraine. Available online: https://forbio-project.eu/assets/content/publication/20161212-FORBIO_agronomic%20feasibility%20Ukraine_CTXI_disclaimer.pdf (accessed on 2 February 2021).
- Kopp, D.; Schwanecke, W. Standörtlich-Naturräumliche Grundlagen Ökologiegerechter Forstwirtschaft; Deutscher Landwirtschaftsverlag: Berlin, Germany, 1994. [Google Scholar]
- Studie zUr klimatischen Entwicklung Im Land Brandenburg Bis 2055 und Deren Auswirkungen Auf Den Wasserhaushalt, Die Forst- und Landwirtschaft Sowie Die Ableitung Erster Perspektiven. Available online: https://www.pik-potsdam.de/en/output/publications/pikreports/.files/pr83.pdf (accessed on 11 March 2021).
- Bundesministerium für Justiz und Verbraucherschutz: Bundes-Bodenschutzgesetz Vom 17. März 1998 (BGBl. I S. 502), das Zuletzt Durch Artikel 101 der Verordnung vom 31. August 2015 (BGBl. I S. 1474) Geändert Worden Ist. Available online: http://www.gesetze-im-internet.de/bbodschg/index.html (accessed on 2 February 2021).
- Schmidt, M. Planungsrelevante Aspekte einer Rieselfeldnachnutzung im Verflechtungsraum Brandenburg—Berlin. In Rieselfelder Brandenburg-Berlin, Studien- und Tagungsberichte des Landesumweltamtes; Band 9; Landesumweltamt Brandenburg: Brandenburg, Germany, 1995; pp. 4–10. [Google Scholar]
- FORBIO: D2.1—Agronomic Feasibility Study in Italy. Available online: https://forbio-project.eu/assets/content/publication/FORBIO_D21_approved.pdf (accessed on 2 February 2021).
- FORBIO: D2.3—Agronomic Feasibility Study in Germany. Available online: https://forbio-project.eu/assets/content/publication/FORBIO_D2.3_07.12.2016_disclaimer.pdf (accessed on 2 February 2021).
- FORBIO: D4.3—Production of a Roadmap for the Removal of the Main Economic and Non-Economic Barriers to the Market Uptake of Advanced Bioenergy in the Case Study Sites Including Roles and Responsibilities of each Relevant Stakeholder Group in their Implementation. Available online: https://forbio-project.eu/assets/content/publication/D4.3_FAO_final_12_12_2018.pdf (accessed on 2 February 2021).
- Food and Agricultural Organisation (FAO); Consultative Group on International Agricultural Research (CGIAR). Research Priorities for Marginal Lands, the Framework for Prioritizing Land Types in Agricultural Research, the Rural Poverty and Land Degradation: A Reality Check for the CGIAR. 1999. Available online: https://core.ac.uk/download/pdf/132695116.pdf (accessed on 10 March 2021).
- FAO. Statistics Division, Land Use and Irrigation—Codes and Definitions. 2014. Available online: www.fao.org/fileadmin/templates/ess/ess_test_folder/Definitions/LandUse_list.xls (accessed on 2 February 2021).
- Hirschmugl, M.; Sobe, C.; Khawaja, C.; Janssen, R.; Traverso, L. Pan-European Mapping of Underutilised Land for Bioenergy Production. Land 2021, 10, 102. [Google Scholar] [CrossRef]
- JRC. Maps of Heavy Metals in the Soils of the EU, based on LUCAS 2009 HM Data. Available online: https://esdac.jrc.ec.europa.eu/content/maps-heavy-metals-soils-eu-based-lucas-2009-hm-data-0#tabs-0-description=1 (accessed on 2 February 2021).
- Council of the European Union. Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed—Council statement. Official Journal L 140, 30/05/2002 P. 0010–0022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1591166382702&uri=CELEX%3A32002L0032 (accessed on 2 February 2021).
- Toth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Traverso, L.; Colangeli, M.; Morese, M.; Pulighe, G.; Branca, G. Opportunities and constraints for implementation of cellulosic ethanol value chains in Europe. Biomass Bioenergy 2020, 141, 105692. [Google Scholar] [CrossRef]
- Knoche, D.; Mergner, R.; Köhler, R.; Rutz, D.; Janssen, R. Mobilization of disused sewage irrigation fields for sustainable green biomass utilization—An applied feasibility study in the metropolis region Berlin & Brandenburg, Germany. In Proceedings of the 27th European Biomass Conference and Exhibition, Lisbon, Portugal, 27 May–30 May 2019; pp. 377–386. [Google Scholar] [CrossRef]
- Arca, P. Cropping Systems for Biomass Production under Mediterranean Conditions: Implantation Techniques and Soil Carbon Balance. Ph.D. Thesis, University of Sassari, Sassari, Italy, 2016. [Google Scholar]
- FORBIO: D2.2—Techno-Economic Feasibility Study in Italy. Available online: https://forbio-project.eu/assets/content/publication/20161216_FORBIO_D2.2_disclaimer.pdf (accessed on 2 February 2021).
- FORBIO: D3.3—Final Report on the Sustainability Assessment of the Selected Advanced Bioenergy Value Chains in all the Case Study Sites. Available online: https://forbio-project.eu/assets/content/publication/D3.3_FINAL_02.07.2018.pdf (accessed on 2 February 2021).
- FORBIO: D2.6—Techno-Economic Feasibility Study in Ukraine. Available online: https://forbio-project.eu/assets/content/publication/20180206_FORBIO_D2.6_Techno_economic_feasibility.pdf (accessed on 2 February 2021).
- Jäkel, K.; Glauert, T.; Rieckmann, C.; Hartmann, A.; Fritz, M.; Märtin, M.; Barthelmes, G.; Theiß, M.; Pötzschke, K.; Scharff, A. Pflanzenbauliche, Ökonomische und Ökologische Bewertung Von Sorghumarten und -Hybriden Als Energiepflanzen; Heft 15; Schriftenreihe des Landesamtes für Umwelt, Landwirtschaft und Geologie Sachsen (Hrsg.): Dresden, Germany, 2015; p. 338. (In German) [Google Scholar]
- TFZ. Bioenergie-Dauerkulturen Auswahl Ökologischer Alternativen. Available online: https://www.tfz.bayern.de/mam/cms08/rohstoffpflanzen/dateien/tfz_wissen_p_dauerkulturen_web_s.pdf (accessed on 2 February 2021).
- Gansberger, M.; Montgomery, L.F.R.; Liebhard, P. Botanical characteristics, crop management and potential of Silphium perfoliatum L. as a renewable resource for biogas production: A review. Ind. Crops Prod. 2015, 63, 362–372. [Google Scholar] [CrossRef]
- FORBIO: D2.4—Techno-Economic Feasibility Study in Germany. Available online: https://forbio-project.eu/assets/content/publication/Technoeconomic_feasibility_FORBIO_Germany_12.04.2018.pdf (accessed on 2 February 2021).
- Mandl, M.; Graf, N.; Thaller, A.; Böchzelt, H.; Schnitzer, H.; Steinwender, M.; Wachlhofer, R.; Fink, R.; Kromus, S.; Ringhofer, J. Grüne Bioraffinerie—Aufbereitung und Verwertung der Gras-Fraktion; Berichte aus Energie- und Umweltforschung; Bundesministerium für Verkehr, Innovation und Technologie, Bmvit: Vienna, Austria, 2006; p. 67. (In German)
- Ministry of Ecology and Natural Resources of Ukraine. Available online: https://mepr.gov.ua/news/35913.html (accessed on 2 February 2021).
- SeemLa Project: Sustainable Exploitation of Biomass for Bioenergy from Marginal Lands. Available online: https://www.seemla.eu/home/ (accessed on 2 February 2021).
- MAGIC Project: Marginal Lands for Growing Industrial Crops: Turning a Burden into an Opportunity. Available online: http://magic-h2020.eu (accessed on 2 February 2021).
- GAEZ: Global Agro-Ecological Zones—Model Documentation. Available online: http://www.fao.org/fileadmin/user_upload/gaez/docs/GAEZ_Model_Documentation.pdf (accessed on 2 February 2021).
- Padella, M.; O’Connell, A.; Prussi, M. What is still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector. Appl. Sci. 2019, 9, 4523. [Google Scholar] [CrossRef] [Green Version]
- Angelini, L.G.; Ceccarini, L.; Nassi o Di Nasso, N.; Bonari, E. Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: Analysis of productive characteristics and energy balance. Biomass Bioenergy 2009, 33, 635–643. [Google Scholar] [CrossRef]
- Fernando, A.L.; Boléo, S.; Barbosa, B.; Costa, J.; Duarte, M.P.; Monti, A. Perennial Grass Production opportunities on Marginal Mediterranean Land. Bioenergy Res. 2015, 8, 1523–1537. [Google Scholar] [CrossRef]
- Mantineo, M.; D’Agosta, G.M.; Copani, V.; Patanè, C.; Cosentino, S.L. Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crop. Res. 2009, 114, 204–213. [Google Scholar] [CrossRef]
- Immerzeel, D.J.; Verweij, P.A.; van der Hilst, F.; Faaij, A.P.C. Biodiversity impacts of bioenergy crop production: A state-of-the-art review. GCB Bioenergy 2014, 6, 183–209. [Google Scholar] [CrossRef] [Green Version]
- Chimento, C.; Almagro, M.; Amaducci, S. Carbon sequestration potential in perennial bioenergy crops: The importance of organic matter inputs and its physical protection. GCB Bioenergy 2014, 8, 111–121. [Google Scholar] [CrossRef]
- Weih, M.; Nordh, N.E. Determinants of biomass production in hybrid willows and the prediction of field performance from pot studies. Tree Physiol. 2005, 25, 1197–1206. [Google Scholar] [CrossRef] [Green Version]
- E4TECH: Ramp up of Lignocellulosic Ethanol in Europe to 2030 Final Report. 2017. Available online: http://www.e4tech.com/wp-content/uploads/2017/10/E4tech_ICLE_Final_Report_Dec17.pdf (accessed on 2 February 2021).
- De Vries, S.C.; van de Ven, G.W.J.; van Ittersum, M.K. First or second generation biofuel crops in Brandenburg, Germany? A model-based comparison of their production-ecological sustainability. Eur. J. Agron. 2014, 52, 166–179. [Google Scholar] [CrossRef]
- Panoutsou, C.; Chiaramonti, D. Socio-Economic Opportunities from Miscanthus Cultivation in Marginal Land for Bioenergy. Energies 2020, 13, 2741. [Google Scholar] [CrossRef]
- Novalin, S.; Zweckmeier, T. Renewable resources—Green biorefinery: Separation of valuable substances from fluid fractions by means of membrane technology. Biofuel Bioprod. Biorefining 2009, 3, 20–27. [Google Scholar] [CrossRef]
- Slade, R.; Bauen, A.; Shah, N. The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe. Biotechnol. Biofuels 2009, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Morales, M.; Quintero, J.; Conejeros, R.; Aroca, G. Life cycle assessment of lignocellulosic bioethanol: Environmental impacts and energy balance. Renew. Sustain. Energy Rev. 2015, 42, 1349–1361. [Google Scholar] [CrossRef]
- Gioacchini, P.; Cattaneo, F.; Barbanti, L.; Montecchio, D.; Ciavatta, C.; Marzadori, C. Carbon sequestration and distribution in soil aggregate fractions under Miscanthus and giant reed in the Mediterranean area. Soil Tillage Res. 2016, 163, 235–242. [Google Scholar] [CrossRef]
- Stauffer, M. Changes in soil quality over time in a very short rotation willow coppice as compared with the neighbouring soils of an alluvial forest, grassy strip and annual crop. Rev. For. Française 2015, 66. [Google Scholar] [CrossRef] [Green Version]
- Volk, T.A.; Verwijst, T.; Tharakan, P.J.; Abrahamson, L.P.; White, E.H. Growing fuel: A sustainability assessment of willow biomass crops. Front. Ecol. Environ. 2004, 2, 411–418. [Google Scholar] [CrossRef]
- Kim, S.; Dale, B.E. Potential job creation in the cellulosic biofuel industry: The effect of feedstock price. Biofuel Bioprod. Biorefining 2015, 9, 639–647. [Google Scholar] [CrossRef]
- IEA. Methane Emissions from Biogas Plants. 2017. Available online: https://www.ieabioenergy.com/wp-content/uploads/2018/01/Methane-Emission_web_end_small.pdf (accessed on 2 February 2021).
Heavy Metal | EU-Directive Thresholds | Finnish Thresholds |
---|---|---|
Arsenic (As) | n/a | 5 |
Cadmium (Cd) | 1–3 | 1 |
Chromium (Cr) | n/a | 100 |
Copper (Cu) | 50–140 | 100 |
Mercury (Hg) | 1–1.5 | 0.5 |
Nickel (Ni) | 30–75 | 50 |
Lead (Pb) | 50–300 | 60 |
Zinc (Zn) | 150–300 | 200 |
Cobalt (Co) | n/a | 20 |
Manganese (Mn) | n/a | n/a |
Antimony (Sb) | n/a | 2 |
Vanadium (V) | n/a | 100 |
Molybdenum (Mo) | n/a | n/a |
Standard Indicators | Advanced Indicators | |
---|---|---|
Environmental | Air Emission | |
Water Use | ||
Land Use Change | ||
Social | Jobs in Bioenergy sector | |
Economic | Net Energy Balance | Income |
Gross Value Added | Land Tenure | |
Infrastructure | Energy Access | |
Capacity for the use of bioenergy |
Scenario 1 | Scenario 2 | |
---|---|---|
Costs (Million EUR/20 years) | 13.1–16.7 | 40 |
Revenues (Million EUR/20 years) | 26.4 | 132 |
Net Benefit (Million EUR/20 years) | 9.7–13.3 | 92 |
Net annual benefit (EUR/year) | 485,000–665,000 | 6.6 Million |
Scenario 3 | Scenario 4 | |
---|---|---|
Costs (Million EUR/20 years) | 1.7 | 4 |
Revenues (Million EUR/20 years) | 4.1 | 7.1–10 |
Net Benefit (Million EUR/20 years) | 2.4 | 3.1–6 |
Net annual benefit (EUR/year) | 120,000 | 155,000 to 300,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khawaja, C.; Janssen, R.; Mergner, R.; Rutz, D.; Colangeli, M.; Traverso, L.; Morese, M.M.; Hirschmugl, M.; Sobe, C.; Calera, A.; et al. Viability and Sustainability Assessment of Bioenergy Value Chains on Underutilised Lands in the EU and Ukraine. Energies 2021, 14, 1566. https://doi.org/10.3390/en14061566
Khawaja C, Janssen R, Mergner R, Rutz D, Colangeli M, Traverso L, Morese MM, Hirschmugl M, Sobe C, Calera A, et al. Viability and Sustainability Assessment of Bioenergy Value Chains on Underutilised Lands in the EU and Ukraine. Energies. 2021; 14(6):1566. https://doi.org/10.3390/en14061566
Chicago/Turabian StyleKhawaja, Cosette, Rainer Janssen, Rita Mergner, Dominik Rutz, Marco Colangeli, Lorenzo Traverso, Maria Michela Morese, Manuela Hirschmugl, Carina Sobe, Alfonso Calera, and et al. 2021. "Viability and Sustainability Assessment of Bioenergy Value Chains on Underutilised Lands in the EU and Ukraine" Energies 14, no. 6: 1566. https://doi.org/10.3390/en14061566
APA StyleKhawaja, C., Janssen, R., Mergner, R., Rutz, D., Colangeli, M., Traverso, L., Morese, M. M., Hirschmugl, M., Sobe, C., Calera, A., Cifuentes, D., Fabiani, S., Pulighe, G., Pirelli, T., Bonati, G., Tryboi, O., Haidai, O., Köhler, R., Knoche, D., ... Gyuris, P. (2021). Viability and Sustainability Assessment of Bioenergy Value Chains on Underutilised Lands in the EU and Ukraine. Energies, 14(6), 1566. https://doi.org/10.3390/en14061566