# A Fuzzy-ANP Approach for Comprehensive Benefit Evaluation of Grid-Side Commercial Storage Project

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

- (1)
- A comprehensive benefit evaluation index system has been established, which fully takes into account the actual operation status of grid-side energy storage projects and has more practical and theoretical value than financial evaluation. Refer to existing researches and literatures [17,18,19,20,21], take energy efficiency, economic benefit, social benefit, and environmental benefit as the four dimensions of the comprehensive benefit evaluation index system.
- (2)
- Summarized the current grid-side energy storage business modes in China. Consider the differences among modes, different indicators in the evaluation index system for specific business mode are selected to evaluate the comprehensive benefits, which can avoid the ambiguity of the evaluation process and ensure the accuracy of evaluation results.
- (3)
- Considering that the energy storage industry is in a rapid and unstable stage, the Analytic Network Process (ANP) and comprehensive fuzzy evaluation methods are combined to apply the comprehensive benefits evaluation of grid-side energy storage projects.
- (4)
- Through the empirical analysis of 100-megawatt storage project, the key influencing factors of comprehensive benefits are extracted. It would help promote the innovation and breakthrough of energy storage policy mechanism and ensure the orderly and sustainable development of energy storage.

## 2. Materials and Methods

#### 2.1. Comprehensive Benefit Evaluation Index System of Grid-Side Commercial Storage Project

#### 2.1.1. Comprehensive Benefit Evaluation Index System

#### Energy Efficiency

#### Economic Benefits

#### Social Benefits

#### Environmental Benefits

#### 2.1.2. Benefit Evaluation System of Large-Scale Energy Storage Projects under Different Business Modes

#### 2.2. Fuzzy-ANP Evaluation Method of Grid-Side Commercial Storage Project

_{s}. Since there are m B

_{s}criteria in the control layer, there are m hypermatrices similar to the above criteria. The sub-block W

_{ij}of each hypermatrix is column normalized, but the entire hypermatrix W is not column normalized. Therefore, the hypermatrix needs to be weighted, using B

_{s}as the criterion, and then C

_{j}as the sub-criterion. Under B

_{s}, the relative importance of each element group and C

_{j}is compared one by one. Finally, N comparison matrices are formed, and the weighting matrix A is obtained as shown in Formula (2) [48].

_{ij}Wij. The number of such weighted hypermatrices is m.

- (1)
- Unqualified function$${f}_{1}(x)=\{\begin{array}{l}1,x\in [a,\frac{a+c}{2}]\\ \frac{2d-2x}{2d-a-c},x\in (\frac{a+c}{2},d]\\ \\ 0,x\in (d,b]\end{array}$$
- (2)
- Qualified function$${f}_{2}(x)=\{\begin{array}{l}\frac{2x-2a}{e-a},x\in [a,\frac{a+e}{2}]\\ \frac{2e-2x}{e-a},x\in (\frac{a+e}{2},e]\\ \\ 0,x\in (e,b]\end{array}$$
- (3)
- Good function$${f}_{3}(x)=\{\begin{array}{l}0,x\in [a,c]\\ \\ \frac{2x-2c}{b-c},x\in (c,\frac{c+b}{2}]\\ \frac{2b-2x}{b-c},x\in [\frac{c+b}{2},b)\end{array}$$
- (4)
- Excellent function$${f}_{4}(x)=\{\begin{array}{l}0,x\in [a,d]\\ \frac{x-d}{b+e-2d},x\in (d,\frac{e+b}{2}]\\ 1,x\in (\frac{e+b}{2},b]\end{array}$$

_{i}= { r

_{i1}, r

_{i2}, …, r

_{im}} can be constructed. r

_{ij}represents the membership degree of the evaluation factor e

_{i}to the graded fuzzy subset V

_{j}. Combine the fuzzy subsets corresponding to each single benefit indicator to form an evaluation matrix:

_{j}is the membership degree of a large-scale energy storage project belonging to the j-th comment V

_{j}when comprehensively considering the impact of all benefit indicators. B is a fuzzy set on the comment set V, and ○ represents the M(·,⊕) operator.

_{j}in fuzzy set B, take the level corresponding to the largest b

_{j}value, and determine the (excellent, good, qualified, unqualified) level corresponding to the large-scale energy storage project.

## 3. Results

#### 3.1. Evaluation Indicators Values of Zhenjiang Storage Project

#### 3.1.1. Energy Efficiency Indicators Values

#### 3.1.2. Economic Indicators Values

#### 3.1.3. Social and Environmental Indicators Values

_{1}and C

_{2}are −0.028 × 10

^{−5}and 2.79 × 10

^{−7}.

_{3}) is 50 times that of the thermal power unit of the same capacity as shown in Figure 6.

#### 3.2. Comprehensive Benefit Evaluation of Zhenjiang Storage Project

#### 3.2.1. Index System Weight Determination

#### 3.2.2. Fuzzy Comprehensive Benefit Evaluation

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Essa, M.J.M.A. Power management of grid-integrated energy storage batteries with intermittent renewables. J. Energy Storage
**2020**, 31, 101762. [Google Scholar] [CrossRef] - Conlon, T.; Waite, M.; Modi, V. Assessing new transmission and energy storage in achieving increasing renewable generation targets in a regional grid. Appl. Energy
**2019**, 250, 1085–1098. [Google Scholar] [CrossRef] - Sheha, M.; Mohammadi, K.; Powell, K. Techno-economic analysis of the impact of dynamic electricity prices on solar penetration in a smart grid environment with distributed energy storage. Appl. Energy
**2021**, 282, 116168. [Google Scholar] [CrossRef] - Frate, G.F.; Ferrari, L.; Desideri, U. Energy storage for grid-scale applications: Technology review and economic feasibility analysis. Renew. Energy
**2020**, 163, 1754–1772. [Google Scholar] [CrossRef] - Zame, K.K.; Brehm, C.A.; Nitica, A.T.; Richard, C.L.; Schweitzer III, G.D. Smart grid and energy storage: Policy recommendations. Renew. Sustain. Energy Rev.
**2018**, 82, 1646–1654. [Google Scholar] [CrossRef] - Barelli, L.; Bidini, G.; Ciupageanu, D.; Pelosi, D. Integrating Hybrid Energy Storage System on a Wind Generator to enhance grid safety and stability: A Levelized Cost of Electricity analysis. J. Energy Storage
**2021**, 34, 102050. [Google Scholar] [CrossRef] - Child, M.; Kemfert, C.; Bogdanov, D.; Breyer, C. Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe. Renew. Energy
**2019**, 139, 80–101. [Google Scholar] [CrossRef] - Schoenung, S.M.; Eyer, J.M.; Iannucci, J.J.; Horgan, S.A. Energy Storage for a Competitive Power Market. Annu. Rev. Energy Environ.
**1996**, 21, 347–370. [Google Scholar] [CrossRef] - Sioshansi, R.; Denholm, P.; Jenkin, T. Market and Policy Barriers to Deployment of Energy Storage. Econ. Energy Environ. Policy
**2012**, 1. [Google Scholar] [CrossRef] [Green Version] - Li, J.L.; Wang, J.B.; Yuan X., D.; Zhou, J.H. A Review of Energy Storage Industry Policies. Electr. Energy Manag. Technol.
**2019**, 20, 1–9. [Google Scholar] - Valero, A.; Serra, L.; Uche, J. Fundamentals of Exergy Cost Accounting and Thermoeconomics. Part I: Theory. J. Energy Resour. Technol.
**2005**, 128, 1–8. [Google Scholar] [CrossRef] - Poonpun, P.; Jewell, W.T. Analysis of the Cost per Kilowatt Hour to Store Electricity. IEEE Trans. Energy Convers.
**2008**, 23, 529–534. [Google Scholar] [CrossRef] - Skyllas-Kazacos, M.; Menictas, C. The vanadium redox battery for emergency back-up application. In Proceedings of the 19th International Telecommunications Energy Conference—INTELEC 1997, Melbourne, VIC, Australia, 19–23 October 1997; IEEE: Piscataway, NJ, USA, 1997; pp. 463–471. [Google Scholar]
- Sasaki, T.; Kadoya, T.; Enomoto, K. Study on load frequency control using Redox flow batteries. IEEE Trans. Power Syst.
**2004**, 1, 580–586. [Google Scholar] - Sedghi, M.; Ahmadian, A.; Aliakbar-Golkar, M. Optimal Storage Planning in Active Distribution Network Considering Uncertainty of Wind Power Distributed Generation. IEEE Trans. Power Syst.
**2016**, 31, 304–316. [Google Scholar] [CrossRef] - Nick, M.; Cherkaoui, R.; Paolone, M. Optimal Allocation of Dispersed Energy Storage Systems in Active Distribution Networks for Energy Balance and Grid Support. IEEE Trans. Power Syst.
**2014**, 29, 2300–2310. [Google Scholar] [CrossRef] - Yuan, J.; Luo, X.; Li, Z.; Li, L.; Ji, P.; Zhou, Q.; Zhang, Z. Sustainable development evaluation on wind power compressed air energy storage projects based on multi-source heterogeneous data. Renew. Energy
**2021**, 169, 1175–1189. [Google Scholar] [CrossRef] - Wu, Y.; Wu, C.; Zhou, J.; He, F.; Xu, C.; Zhang, B.; Zhang, T. An investment decision framework for photovoltaic power coupling hydrogen storage project based on a mixed evaluation method under intuitionistic fuzzy environment. J. Energy Storage
**2020**, 30, 101601. [Google Scholar] [CrossRef] - Liu, Y.; Zheng, R.; Chen, S.; Yuan, J. The economy of wind-integrated-energy-storage projects in China’s upcoming power market: A real options approach. Resour. Policy
**2019**, 63, 101434. [Google Scholar] [CrossRef] - Wu, Y.; Xu, C.; Zhang, B.; Tao, Y.; Li, X.; Chu, H.; Liu, F. Sustainability performance assessment of wind power coupling hydrogen storage projects using a hybrid evaluation technique based on interval type-2 fuzzy set. Energy
**2019**, 179, 1176–1190. [Google Scholar] [CrossRef] - Sidhu, A.S.; Pollitt, M.G.; Anaya, K.L. A social cost benefit analysis of grid-scale electrical energy storage projects: A case study. Appl. Energy
**2018**, 212, 881–894. [Google Scholar] [CrossRef] - Ghadi, M.J.; Ghavidel, S.; Rajabi, A.; Azizivahed, A.; Li, L.; Zhang, J. A review on economic and technical operation of active distribution systems. Renew. Sustain. Energy Rev.
**2019**, 104, 38–53. [Google Scholar] [CrossRef] - Saboori, H.; Hemmati, R.; Ghiasi, S.M.S.; Dehghan, S. Energy storage planning in electric power distribution networks—A state-of-the-art review. Renew. Sustain. Energy Rev.
**2017**, 79, 1108–1121. [Google Scholar] [CrossRef] - Afzali, P.; Shoa, N.A.; Rashidinejad, M.; Bakhshai, A. Techno-economic study driven based on available efficiency index for optimal operation of a smart grid in the presence of energy storage system. J. Energy Storage
**2020**, 32, 101853. [Google Scholar] [CrossRef] - Colmenar-Santos, A.; Reino-Rio, C.; Borge-Diez, D.; Collado-Fernández, E. Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks. Renew. Sustain. Energy Rev.
**2016**, 59, 1130–1148. [Google Scholar] [CrossRef] - Escalera, A.; Hayes, B.; Prodanović, M. A survey of reliability assessment techniques for modern distribution networks. Renew. Sustain. Energy Rev.
**2018**, 91, 344–357. [Google Scholar] [CrossRef] - Parwal, A.; Fregelius, M.; Temiz, I.; Göteman, M.; De Oliveira, J.G.; Boström, C.; Leijon, M. Energy management for a grid-connected wave energy park through a hybrid energy storage system. Appl. Energy
**2018**, 231, 399–411. [Google Scholar] [CrossRef] - Mudumbai, R.; Dasgupta, S.; Cho, B.B. Distributed Control for Optimal Economic Dispatch of a Network of Heterogeneous Power Generators. IEEE Trans. Power Syst.
**2012**, 27, 1750–1760. [Google Scholar] [CrossRef] - Tang, C.; Xu, J.; Sun, Y.; Liu, J.; Li, X.; Ke, D.; Yang, J.; Peng, X. Look-Ahead Economic Dispatch With Adjustable Confidence Interval Based on a Truncated Versatile Distribution Model for Wind Power. IEEE Trans. Power Syst.
**2018**, 33, 1755–1767. [Google Scholar] [CrossRef] - Panda, D.K.; Das, S. Economic operational analytics for energy storage placement at different grid locations and contingency scenarios with stochastic wind profiles. Renew. Sustain. Energy Rev.
**2021**, 137, 110474. [Google Scholar] [CrossRef] - Wu, Y.N.; Zhang, T.; Zhong, K.; Wang, L.W.; Xu, C.; Xu, R. Optimal planning of energy storage technologies considering thirteen demand scenarios from the perspective of electricity Grid: A Three-Stage framework. Energy Convers. Manag.
**2021**, 229, 113789. [Google Scholar] [CrossRef] - National Energy Administrator: Interim Measures for the Management of Central Financial Incentive Funds for the Comprehensive Pilot Work of Electricity Demand Side Management. Available online: http://www.nea.gov.cn/2012-07/17/c_131719717.htm (accessed on 25 January 2021).
- Liu, J.; Hu, C.; Kimber, A.; Wang, Z. Uses, Cost-Benefit Analysis, and Markets of Energy Storage Systems for Electric Grid Applications. J. Energy Storage
**2020**, 32, 101731. [Google Scholar] [CrossRef] - Wu, W.; Lin, B. Application value of energy storage in power grid: A special case of China electricity market. Energy
**2018**, 165, 1191–1199. [Google Scholar] [CrossRef] - Ding, J.; Xu, Y.; Chen, H.; Sun, W.; Hu, S.; Sun, S. Value and economic estimation model for grid-scale energy storage in monopoly power markets. Appl. Energy
**2019**, 240, 986–1002. [Google Scholar] [CrossRef] - Pupo-Roncallo, O.; Ingham, D.; Pourkashanian, M. Techno-economic benefits of grid-scale energy storage in future energy systems. Energy Rep.
**2020**, 6, 242–248. [Google Scholar] [CrossRef] - Hannan, M.; Al-Shetwi, A.; Begum, R.; Young, S.; Hoque, M.; Ker, P.; Mansur, M.; Alzaareer, K. The value of thermal management control strategies for battery energy storage in grid decarbonization: Issues and recommendations. J. Clean. Prod.
**2020**, 276, 124223. [Google Scholar] [CrossRef] - Arbabzadeh, M.; Johnson, J.X.; Keoleian, G.A. Parameters driving environmental performance of energy storage systems across grid applications. J. Energy Storage
**2017**, 12, 11–28. [Google Scholar] [CrossRef] [Green Version] - Hu, J.; Li, Q.H.; Huang, B.B.; Feng, K.H. Business Model Research of Energy Storage on Grid Side Adapted to Application Scenarios and Policy Environment in China. J. Glob. Energy Interconnect.
**2019**, 2, 367–375. [Google Scholar] - Li, J.C.; Li, J.Y.; Niu, D.X.; Wu, Y.N. Study on the evaluation model for the power grid corporation operation ability based on ANP. Power Syst. Prot. Control
**2011**, 39, 37–43. [Google Scholar] - Wu, L.P. Research on Fuzzy Comprehensive Evaluation Method and Its Application. 2006. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=2006152868.nh&DbName=CMFD2006 (accessed on 20 February 2021). (In Chinese).
- Liu, S.; Du, S.X. Fuzzy comprehensive evaluation based on data envelopment analysis. Fuzzy Syst. Math.
**2010**, 24, 93–98. [Google Scholar] - Luo, C.; Ju, Y.; Gonzalez, E.D.S.; Dong, P.; Wang, A. The waste-to-energy incineration plant site selection based on hesitant fuzzy linguistic Best-Worst method ANP and double parameters TOPSIS approach: A case study in China. Energy
**2020**, 211, 118564. [Google Scholar] [CrossRef] - Ervural, B.C.; Zaim, S.; Demirel, O.F.; Aydin, Z.; Delen, D. An ANP and fuzzy TOPSIS-based SWOT analysis for Turkey’s energy planning. Renew. Sustain. Energy Rev.
**2018**, 82, 1538–1550. [Google Scholar] [CrossRef] - Wang, M.; Niu, D. Research on project post-evaluation of wind power based on improved ANP and fuzzy comprehensive evaluation model of trapezoid subordinate function improved by interval number. Renew. Energy
**2019**, 132, 255–265. [Google Scholar] [CrossRef] - Wu, Y.; Zhang, B.; Xu, C.; Li, L. Site selection decision framework using fuzzy ANP-VIKOR for large commercial rooftop PV system based on sustainability perspective. Sustain. Cities Soc.
**2018**, 40, 454–470. [Google Scholar] [CrossRef] - Wu, T.; Liu, S.; Ni, M.; Zhao, Y.; Shen, P.; Rafique, S.F. Model design and structure research for integration system of energy, information and transportation networks based on ANP-fuzzy comprehensive evaluation. Glob. Energy Interconnect.
**2018**, 1, 137–144. [Google Scholar] - Morteza, Z.; Reza, F.M.; Seddiq, M.M.; Sharareh, P.; Jamal, G. Selection of the optimal tourism site using the ANP and fuzzy TOPSIS in the framework of Integrated Coastal Zone Management: A case of Qeshm Island. Ocean Coast. Manag.
**2016**, 130, 179–187. [Google Scholar] [CrossRef] - Alilou, H.; Rahmati, O.; Singh, V.P.; Choubin, B.; Pradhan, B.; Keesstra, S.; Ghiasi, S.S.; Sadeghi, S.H. Evaluation of watershed health using Fuzzy-ANP approach considering geo-environmental and topo-hydrological criteria. J. Environ. Manag.
**2019**, 232, 22–36. [Google Scholar] [CrossRef] [PubMed] - Qian, Q.Q. Research on Comprehensive Evaluation of Energy Storage System Applied in Wind Farm. North China Electric University 2016. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=1016267316.nh&DbName=CMFD2017 (accessed on 20 February 2021). (In Chinese).
- Guo, L.; Xue, G.Y.; Wu, C.; Xie Z., J.; Liu, G.J.; Li, B.J. Research on economic evaluation of energy storage applied to load shift. Power Demand Side Manag.
**2019**, 21, 31–34. [Google Scholar] - Zhong, Y.F.; Huang, M.X.; Qiang, D.J. Reliability modeling of battery energy storage system and its effect on the reliability of distribution system. Power Syst. Prot. Control
**2013**, 41, 95–102. [Google Scholar]

**Figure 3.**The hierarchical structure of the comprehensive benefit evaluation network of energy storage.

**Figure 6.**Contribution comparison of frequency regulation between energy storage and conventional unit.

First Level Indicator | Second Level Indicator | Third Level Indicator | Indicator Preference | Explanation |
---|---|---|---|---|

Energy efficiency (A) | Technology | Cell voltage (A_{1}) | + | Standard voltage of each battery |

Energy Density (A_{2}) | + | Effective storage capacity of per unit mass of material | ||

Power density (A_{3}) | + | Effective storage power of per unit mass of material | ||

Self-discharge rate (A_{4}) | − | The retain ability when the battery with open circuit state | ||

Application | Cycle life (A_{5}) | + | The maximum cycle number that the system could withstand | |

Charge and discharge efficiency (A_{6}) | + | The ratio of the released energy to the initial energy | ||

Stability (A_{7}) | + | Ability to maintain stable operation under external influence | ||

Responsiveness (A_{8}) | + | Required time for system response | ||

Economic benefits (B) | Cost | Construction cost (B_{1}) | − | Construction cost of project |

Capacity cost (B_{2}) | − | Cost of configuring battery system | ||

Power cost (B_{3}) | − | Cost of conversion equipment and other facilities | ||

Operation and maintenance cost (B_{4}) | − | Operation & maintenance costs and rental fees of storage systems | ||

Profit | Peak-to-valley price spread (B_{5}) | + | Profit from peak shaving and valley filling with storage system | |

Saving investment (B_{6}) | + | Saving investment of grid equipment due to storage system | ||

Government subsidy (B_{7}) | + | Policy subsidy rewards of energy storage systems | ||

Network loss reduction (B_{8}) | + | Annual revenue from reducing line loss due to storage system | ||

Recycle revenue (B_{9}) | + | Recyclable value at the end of the energy storage system life | ||

Social benefits (C) | Reliability | Change value of power shortage rate (C_{1}) | + | =LOLP _{with storage} − LOLP _{without storage}LOLP: loss of load probability |

Change value of power available rate (C_{2}) | + | =ASAI _{with storage} − ASAI _{without storage}ASAI: average service availability index | ||

Frequency regulation benefit | Frequency regulation multiple (C_{3}) | + | = σf_{with storage}/σf_{without storage}σf: frequency standard deviation | |

Frequency regulation contribution rate (C _{4}) | + | =(CPS_{with storage} − CPS_{without storage})/CPS_{without storage}CPS: control performance standard | ||

Environmental benefits (D) | Clean consumption | Change rate of clean consumption (D _{1}) | + | =(NC_{with storage} − NC_{without storage})/NC_{without storage}NC: regional new energy consumption amount |

Low carbon reduction | Emission reduction revenue (D _{2}) | + | =Emission cost of thermal power unit × (Storage charge quantity + NC_{with storage} − NC_{without storage}) |

**Table 2.**Comprehensive benefit evaluation index system of energy storage projects under different business modes.

Indicators | A | B_{1} | B_{2} | B_{3} | B_{4} | B_{5} | B_{6} | B_{7} | B_{8} | B_{9} | C_{1} | C_{2} | C_{3} | C_{4} | D_{1} | D_{2} |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Mode A | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||

Mode B | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||

Mode C | √ | √ | √ | √ | √ | √ | ||||||||||

Mode D | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |

Indicator | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 |
---|---|---|---|---|---|---|---|---|

Value | 3.6 | 160 | 1200 | 1% | 10,000 | 95% | 7 | 9 |

Scenario | LOLP (%) | EENS (MWh × a^{−1}) | BPECI (h × a^{−1}) | ASAI (%) |
---|---|---|---|---|

1 | 3.2035 × 10^{−5} | 34.5100 | 0.28063 | 99.9967965 |

2 | 3.2315 × 10^{−5} | 34.8110 | 0.28308 | 99.9967686 |

Year | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|

CPS | 143.70 | 145.33 | 143.58 | 154.72 |

A_{1} | A_{2} | A_{3} | A_{4} | A_{5} | A_{6} | A_{7} | A_{8} | B_{4} | B_{5} | B_{6} | B_{7} | B_{8} | C_{1} | C_{2} | C_{3} | C_{4} | D_{1} | D_{2} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

A_{1} | |||||||||||||||||||

A_{2} | |||||||||||||||||||

A_{3} | |||||||||||||||||||

A_{4} | |||||||||||||||||||

A_{5} | √ | ||||||||||||||||||

A_{6} | √ | ||||||||||||||||||

A_{7} | √ | √ | √ | √ | |||||||||||||||

A_{8} | |||||||||||||||||||

B_{4} | √ | √ | √ | √ | √ | √ | √ | √ | |||||||||||

B_{5} | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||||

B_{6} | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||||

B_{7} | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||

B_{8} | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||||||

C_{1} | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||||

C_{2} | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||

C_{3} | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||||||||

C_{4} | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||||

D_{1} | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||||

D_{2} | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |

A_{1} | A_{2} | A_{3} | A_{4} | A_{5} | A_{6} | A_{7} | A_{8} | |
---|---|---|---|---|---|---|---|---|

A_{1} | 0 | 0 | 0 | 0.18434 | 0 | 0 | 0 | 0 |

A_{2} | 0.10917 | 0 | 0.05911 | 0.0742 | 0.13172 | 0.04176 | 0 | 0 |

A_{3} | 0.16706 | 0.0477 | 0 | 0.03882 | 0.10387 | 0.05295 | 0 | 0 |

A_{4} | 0.03874 | 0.02207 | 0.09557 | 0 | 0.06994 | 0.07936 | 0 | 0 |

A_{5} | 0.03874 | 0.0163 | 0.03692 | 0.03882 | 0 | 0.11245 | 0.11682 | 0 |

A_{6} | 0.03874 | 0.11602 | 0.026 | 0.05756 | 0.04935 | 0 | 0.35049 | 0 |

A_{7} | 0.03874 | 0.13261 | 0.22391 | 0.03258 | 0.05621 | 0.09039 | 0 | 0 |

A_{8} | 0.03612 | 0.13261 | 0.02579 | 0.04098 | 0.05621 | 0.09039 | 0 | 0 |

B_{4} | 0.05168 | 0.03591 | 0.06221 | 0.05941 | 0.01352 | 0 | 0.04323 | 0.02853 |

B_{5} | 0.03917 | 0.05664 | 0.03617 | 0.03839 | 0.0213 | 0.08035 | 0.01644 | 0.07141 |

B_{6} | 0.02969 | 0.02884 | 0.02504 | 0.02761 | 0.03397 | 0.01342 | 0.0303 | 0.05393 |

B_{7} | 0.0225 | 0.02196 | 0.01988 | 0.02 | 0.06553 | 0.0275 | 0.06029 | 0.03778 |

B_{8} | 0.01705 | 0.01672 | 0.01678 | 0.01467 | 0.02577 | 0.03882 | 0.00983 | 0.10886 |

C_{1} | 0.03827 | 0.05509 | 0.12704 | 0.07094 | 0.09103 | 0.05813 | 0.08401 | 0.07205 |

C_{2} | 0.05412 | 0.16603 | 0.08014 | 0.15484 | 0.04663 | 0.16571 | 0.13497 | 0.03877 |

C_{3} | 0.07654 | 0.03736 | 0.04803 | 0.03397 | 0.1063 | 0.03558 | 0.03865 | 0.27637 |

C_{4} | 0.10824 | 0.0187 | 0.02196 | 0.01743 | 0.03322 | 0.01776 | 0.01955 | 0.13313 |

D_{1} | 0.06362 | 0.06362 | 0.06362 | 0.03181 | 0.07158 | 0.02386 | 0.01909 | 0.14332 |

D_{2} | 0.03181 | 0.03181 | 0.03181 | 0.06362 | 0.02386 | 0.07158 | 0.07635 | 0.03583 |

Indicator | D_{2} | C_{3} | C_{4} | B_{4} | B_{7} | B_{8} | A_{6} | A_{7} | A_{8} |
---|---|---|---|---|---|---|---|---|---|

Limiting | 0.13744 | 0.007347 | 0.006773 | 0.007902 | 0.149637 | 0.081315 | 0.001145 | 0.00432 | 0.00011 |

Indicator | Excellent | Good | Qualified | Unqualified | Value |
---|---|---|---|---|---|

A_{1} | {3.25; 4} | {2.5; 3.25} | {1.75; 2.5} | {1; 1.75} | 3.6 |

A_{2} | {200; 250} | {150; 200} | {100; 150} | {50; 100} | 160 |

A_{3} | {1040; 1340} | {740; 1040} | {440; 740} | {140; 440} | 1200 |

A_{4} | {0; 5%} | {5%; 10%} | {10%; 15%} | {15%; 20%} | 1% |

A_{5} | {12,000; 16,000} | {8000; 12,000} | {4000; 8000} | {0; 4000} | 13,000 |

A_{6} | {95%; 100%} | {90%; 95%} | {85%; 90%} | {80%; 85%} | 95% |

A_{7} | {7.5; 10} | {5; 7.5} | {2.5; 5} | {0; 2.5} | 7 |

A_{8} | {7.5; 10} | {5; 7.5} | {2.5; 5} | {0; 2.5} | 9 |

B_{4} | {0; 326} | {326; 651} | {651; 977} | {977; 1304} | 460.7 |

B_{5} | {1617.5; 2156.6} | {1078.3; 1617.5} | {539.2; 1078.3} | {0; 539.2} | 1831.3 |

B_{6} | {7.5; 10} | {5; 7.5} | {2.5; 5} | {0; 2.5} | 6 |

B_{7} | {3954; 5272} | {2636; 3954} | {1318; 2636} | {0; 1318} | 3753.2 |

B_{8} | {6.93–9.24} | {4.62–6.93} | {2.31; 4.62} | {0; 2.31} | 6.97 |

C_{1} | {7.5; 10} | {5; 7.5} | {2.5; 5} | {0; 2.5} | 7 |

C_{2} | {7.5; 10} | {5; 7.5} | {2.5; 5} | {0; 2.5} | 8 |

C_{3} | {7.5; 10} | {5; 7.5} | {2.5; 5} | {0; 2.5} | 6 |

C_{4} | {7.5; 10} | {5; 7.5} | {2.5; 5} | {0; 2.5} | 9 |

D_{1} | {0.45; 0.6} | {0.3; 0.45} | {0.15; 0.3} | {0; 0.15} | 0.453 |

D_{2} | {246.6; 328.8} | {164.4; 246.6} | {82.2; 164.4} | {0; 82.2} | 294.3 |

Indicator | Value (unit: million yuan) | |
---|---|---|

Cost | B_{4} | 4.61 |

Profit | B_{5} | 18.31 |

B_{6} | 6.27 | |

B_{7} | 37.53 | |

B_{8} | 0.07 | |

D_{2} | 2.94 | |

Total revenue | 60.52 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yang, H.; Fan, W.; Qin, G.; Zhao, Z.
A Fuzzy-ANP Approach for Comprehensive Benefit Evaluation of Grid-Side Commercial Storage Project. *Energies* **2021**, *14*, 1129.
https://doi.org/10.3390/en14041129

**AMA Style**

Yang H, Fan W, Qin G, Zhao Z.
A Fuzzy-ANP Approach for Comprehensive Benefit Evaluation of Grid-Side Commercial Storage Project. *Energies*. 2021; 14(4):1129.
https://doi.org/10.3390/en14041129

**Chicago/Turabian Style**

Yang, Huijia, Weiguang Fan, Guangyu Qin, and Zhenyu Zhao.
2021. "A Fuzzy-ANP Approach for Comprehensive Benefit Evaluation of Grid-Side Commercial Storage Project" *Energies* 14, no. 4: 1129.
https://doi.org/10.3390/en14041129