SiO2 Promoted CaO Diffusion to C Phase at 1500 and 1700 °C
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Raw Materials
2.2. Apparatus
3. Results and Discussion
3.1. Physical and Chemical Changes of the Tablets
3.2. Diffusion Behavior Identified by Mo Wire Marker
3.3. Behaviors of SiO2 and Ca2SiO4
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, C.S.; Baddour, R.F.; Howard, J.B.; Meissner, H.P. CaC2 production from CaO and coal or hydrocarbons in a rotating-arc reactor. Ind. Eng. Chem. Process Des. Dev. 1979, 18, 323–328. [Google Scholar] [CrossRef]
- Sun, W. Reviews of the calcium carbide industry in 2012 and prospect in 2013. Econ. Anal. China Pet. Chem. Ind. (Chin.) 2013, 4, 29–31. [Google Scholar]
- Liu, X.; Zhu, B.; Zhou, W.; Hu, S.; Chen, D.; Charla, G. CO2 emissions in calcium carbide industry: An analysis of China’s mitigation potential. Int. J. Greenh. Gas Control 2011, 5, 1240–1249. [Google Scholar] [CrossRef]
- Wang, R.; Ji, L.; Liu, Q.; Zheng, D.; Liu, H.; Liu, Z. Development of Auto-Thermal Production of Calcium Carbide. J. Chem. Ind. Eng. (Chin.) 2014, 65, 2417–2425. [Google Scholar]
- Peter, P.; Werner, H.; Richard, M. Ullmann’s Encyclopedia of Industrial Chemistry: Acetylene; John Wiley & Sons, Inc.: New York, NY, USA, 2012. [Google Scholar]
- Rowan, S.L.; Celik, I.B.; Escobar Vargas, J.A.; Pakalapati, S.R.; Targett, M. Reaction Kinetics Modeling of CaC2 Formation From Coal and Lime. Ind. Eng. Chem. Res. 2014, 53, 2963–2975. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.; Wang, R.; Guo, X.; Liu, Q. Conversion of bio-char to CaC2 at low temperatures-morphology and kinetics. Chem. Eng. Sci. 2018, 192, 516–525. [Google Scholar] [CrossRef]
- El-Naas, M.H.; Munz, R.J.; Ajersch, F. Production of calcium carbide in a plasma-jet fluid bed Reactor. In Proceedings of the ISPC-12, Minneapolis, MN, USA, 21–25 August 1995; Volume 613–618. [Google Scholar]
- Kameyama, N. Electrochemistry: Theory and Applications; Maruzen: Chiyoda-ku, Tokyo, 1956; Volume III-2, pp. 134–142. [Google Scholar]
- Müller, M.B. Structure properties and reactions of CaO in burnt lime. Part 2. Diffusion of carbon into solid lime. Scand. J. Metall. 1990, 19, 191–200. [Google Scholar]
- Li, G.; Liu, Q.; Liu, Z.; Zhang, Z.C.; Li, C.; Wu, W. Production of Calcium Carbide from Fine Biochars. Angew. Chem. Int. Ed. 2010, 49, 8480–8483. [Google Scholar] [CrossRef]
- Ji, L. Fundamental Study of Chemical Reactions and Mass Transfer in CaC2 Production. PhD Dissertation, Beijing University of Chemical Technology, Beijing, China, 2016. [Google Scholar]
- Smigelskas, A.D.; Kirkendall, E.O. Zinc Diffusion in Alpha Brass. Trans. AIME 1947, 171, 130–142. [Google Scholar]
- Sun, Z.; Yu, F.; Li, F.; Li, S.; Fan, L. Experimental Study of HCl Capture Using CaO Sorbents: Activation, Deactivation, Reactivation, and Ionic Transfer Mechanism. Ind. Eng. Chem. Res. 2011, 50, 6034–6043. [Google Scholar] [CrossRef]
- Mrowec, S. Defects and Diffusion in Solids; Elsevier: New York, NY, USA, 1980. [Google Scholar]
- Li, G.; Liu, Q.; Liu, Z. CaC2 Production from Pulverized Coke and CaO at Low Temperatures: Reaction Mechanisms. Ind. Eng. Chem. Res 2012, 51, 10742–10747. [Google Scholar] [CrossRef]
- Huffman, G.P.; Huggins F., E. Reactions and transformation of coal mineral matter at elevated temperature. Mineral Matter and Ash in Coal, Chapter 8. Acs Symp. Ser. 1986, 301, 100–113. [Google Scholar]
- Wang, J.; Ishida, R.; Takarada, T. Carbothermal reductions of quartz and Kaolinite with coal char. Energy Fuels 2000, 14, 1108–1114. [Google Scholar] [CrossRef]
- Li, G.; Liu, Q.; Liu, Z. CaC2 Production from Pulverized Coke and CaO at Low Temperatures: Influence of Minerals in Coal-Derived Coke. Ind. Eng. Chem. Res 2012, 51, 10748–10754. [Google Scholar] [CrossRef]
- Kay, D.A.R.; Taylor, J. Activities of silica in the lime+alumina+silica system. Trans. Faraday Soc. 1960, 56, 1372–1386. [Google Scholar] [CrossRef]
- Ji, l.; Liu, Z.; Wang, R.; Wu, J.; Lin, X.; Liu, Q. Transformation of silicon-bearing minerals during CaC2 production and its effect on CaC2 formation. J. Taiwan Inst. Chem. Eng. 2016, 66, 80–87. [Google Scholar] [CrossRef]
Samples | Proximate Analysis (wt %, Air-Dry Basis) | Ultimate Analysis (wt %, Air-Dry Basis) | ||||||
---|---|---|---|---|---|---|---|---|
Moisture | Ash | Volatile | C | H | O | N | S | |
ash-C | 2.64 | 21.64 | 3.78 | 71.28 | 0.99 | 2.67 | 0.39 | 0.39 |
pure-C | - | 0.12 | - | 99.87 | 0.01 |
Samples | SiO2 | Al2O3 | Fe2O3 | CaO | TiO2 | SO3 |
---|---|---|---|---|---|---|
ash-C | 84.48 | 35.77 | 24.06 | 33.48 | 1.56 | 3.25 |
Samples | 1500 °C | 1700 °C | ||||
---|---|---|---|---|---|---|
Mass (g) | Diameter (mm) | Thickness (mm) | Mass (g) | Diameter (mm) | Thickness (mm) | |
CaO | 0.4629 | 12.10 | 1.56 | 0.4465 | 11.62 | 1.46 |
pure-C | 0.4879 | 13.02 | 1.90 | 0.4812 | 13.02 | 1.90 |
ash-C | 0.3782 | 13.06 | 1.90 | 0.3419 | 12.94 | 1.90 |
Pure-C (+CaO) | 0.4812 | 13.02 | 1.88 | 0.4793 | 13.02 | 1.88 |
ash-C (+CaO) | 0.3763 | 13.04 | 1.92 | 0.3177 | 12.94 | 1.52 |
CaO (+pure-C) | 0.4614 | 12.10 | 1.56 | 0.4408 | 11.62 | 1.44 |
CaO (+ash-C) | 0.4601 | 12.12 | 1.52 | 0.3114 | 11.60 | 1.02 |
CaC2 (CaO+ash-C) | - | - | - | 0.0852 | - | 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, L.; Wang, R.; Liu, Q.; Wu, J.; Pan, Y.; Liu, Z. SiO2 Promoted CaO Diffusion to C Phase at 1500 and 1700 °C. Energies 2021, 14, 587. https://doi.org/10.3390/en14030587
Ni L, Wang R, Liu Q, Wu J, Pan Y, Liu Z. SiO2 Promoted CaO Diffusion to C Phase at 1500 and 1700 °C. Energies. 2021; 14(3):587. https://doi.org/10.3390/en14030587
Chicago/Turabian StyleNi, Lijuan, Renxing Wang, Qingya Liu, Junfei Wu, Yue Pan, and Zhenyu Liu. 2021. "SiO2 Promoted CaO Diffusion to C Phase at 1500 and 1700 °C" Energies 14, no. 3: 587. https://doi.org/10.3390/en14030587
APA StyleNi, L., Wang, R., Liu, Q., Wu, J., Pan, Y., & Liu, Z. (2021). SiO2 Promoted CaO Diffusion to C Phase at 1500 and 1700 °C. Energies, 14(3), 587. https://doi.org/10.3390/en14030587