A Data-Driven Framework to Predict Lithium-Ion Battery Cell Imbalance for Real-Time Battery Management Systems
Abstract
:1. Introduction
2. The GPR-Based Data-Driven Framework
2.1. The Modeling Scales
2.2. Gaussian Process Regression Models
2.3. Probabilistic Finite Element Analysis of Battery Cells
3. Simulation Experiments and Results
3.1. Observation Data Creation
3.2. Training Data Selection and GPR Results
3.3. Probabilistic FEA Results
3.3.1. First Group Experiments
3.3.2. Second Group Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kim, G.; Pesaran, A.; Spotnitz, R. A Three-dimensional Thermal Abuse Model for Lithium-ion Cells. J. Power Sources 2007, 170, 476–489. [Google Scholar] [CrossRef]
- Srinivasan, V.; Wang, C.-Y. Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells. J. Electrochem. Society 2003, 150, A98–A106. [Google Scholar] [CrossRef] [Green Version]
- Barsukov, Y.; Qian, J. Battery Power Management for Portable Devices; Artech House: Norwood, MA, USA, 2013. [Google Scholar]
- Pesaran, A.A.; Kim, G.H.; Keyser, M. Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles. In Proceedings of the 24th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition, Stavanger, Norway, 13–16 May 2009. [Google Scholar]
- Meng, J.; Guo, H.; Niu, C.; Zhao, Y.; Xu, L.; Li, Q.; Mai, L. Advances in Structure and Property Optimizations of Battery Electrode Materials. Joule 2017, 1, 522–547. [Google Scholar] [CrossRef] [Green Version]
- Peter, V.d.B.; Frédéric, V.; Joeri, V.M.; Julien, M.; Wout, V.A. SUBAT: An Assessment of Sustainable Battery Technology. J. Power Sources 2006, 162, 913–919. [Google Scholar]
- Verbrugge, M.W.; Conell, R.S. Electrochemical and Thermal Characterization of Battery Modules Commensurate with Electric Vehicle Integration. J. Electrochem. Soc. 2002, 149, A45–A53. [Google Scholar] [CrossRef]
- Hellweg, B. Microstructural Modeling of Lithium Battery Electrodes; Massachusetts Institute of Technology: Cambridge, MA, USA, 2000. [Google Scholar]
- Johnson, V.H.; Pesaran, A.A.; Sack, T. Temperature-Dependent BatteryModels for High-Power Lithium-lon Batteries. In Proceedings of the 17th Annual Electric Vehicle Symposium, Montreal, QC, Canada, 14–17 June 2000. [Google Scholar]
- Wang, C.Y.; Srinivasan, V. Computational battery dynamics (CBD)—Electrochemical/thermal coupled modeling and multi-scale modeling. J. Power Sources 2002, 110, 364–376. [Google Scholar] [CrossRef]
- He, H.; Xiong, R.; Fan, J. Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach. Energies 2011, 4, 582–598. [Google Scholar] [CrossRef]
- Hu, X.; Li, S.; Peng, H. A Comparative Study of Equivalent Circuit Models for Li-ion Batteries. J. Power Sources 2012, 198, 359–367. [Google Scholar] [CrossRef]
- Newman, J.S. Electrochemical Systems, 2nd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1973. [Google Scholar]
- Kim, G.-H.; Smith, K.; Lee, K.-J.; Santhanagopalan, S.; Pesaran, A. Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales. J. Electrochem. Soc. 2011, 158, A955–A969. [Google Scholar] [CrossRef]
- Doyle, M.; Fuller, T.F.; Newman, J. Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell. J. Electrochem. Soc. 1993, 140, 1526–1533. [Google Scholar] [CrossRef]
- Guo, M.; White, R.E. A distributed thermal model for a Li-ion electrode plate pair. J. Power Sources 2013, 221, 334–344. [Google Scholar] [CrossRef]
- Smith, K.A.; Rahn, C.D.; Wang, C.-Y. Control Oriented 1D Electrochemical Model of Lithium ion Battery. Energy Convers. Manag. 2007, 48, 2565–2578. [Google Scholar] [CrossRef]
- Subramanian, V.R.; Boovaragav, V.; Diwakar, V.D. Toward Real-Time Simulation of Physics Based Lithium-Ion Battery Models. Electrochem. Solid-State Lett. 2007, 10, A255–A260. [Google Scholar] [CrossRef] [Green Version]
- Ramadesigan, V.; Boovaragavan, V.; Subramanian, V.R. Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models. J. Electrochem. Soc. 2010, 157, A854–A860. [Google Scholar] [CrossRef] [Green Version]
- Northrop, P.W.C.; Ramadesigan, V.; De, S.; Subramanian, V.R. Coordinate Transformation, Orthogonal Collocation, Model Reformulation and Simulation of Electrochemical-Thermal Behavior of Lithium-Ion Battery Stacks. J. Electrochem. Soc. 2011, 158, A1461–A1477. [Google Scholar] [CrossRef]
- McHutchon, A. Nonlinear Modelling and Control using Gaussian Processes. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2014. [Google Scholar]
- Damianou, A.; Titsias, M.; Lawrence, N. Variational Gaussian Process Dynamical Systems. In Proceedings of the 24th International Conference on Neural Information Processing Systems, Granada, Spain, 12–15 December 2011. [Google Scholar]
- Wang, J.; Fleet, D.; Hertzmann, A. Gaussian Process Dynamical Models for Human Motion. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 283–298. [Google Scholar] [CrossRef] [Green Version]
- Venables, W.; Ripley, B. Modern Applied Statistics with S-PLUS; Springer: New York, NY, USA, 1999. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: Berlin, Germany, 2009. [Google Scholar]
- Bishop, C. Pattern Recognition and Machine Learning; Springer: Berlin, Germany, 2006. [Google Scholar]
- Girard, A. Approximate Methods for Propagation of Uncertainty with Gaussian Process Models; University of Glasgow: Glasgow, UK, 2004. [Google Scholar]
- Deisenroth, M.P. Efficient Reinforcement Learning Using Gaussian Processes; KIT Scientific Publishing: Karlsruhe, Germany, 2010. [Google Scholar]
- Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann: Burlington, MA, USA, 1988. [Google Scholar]
- Tunga, M.; Demiralp, M. A Factorized High Dimensional Model Representation on the Nodes of a Finite Hyperprismatic Regular Grid. Appl. Math. Comput. 2005, 164, 865–883. [Google Scholar] [CrossRef]
- Balomenos, G. Probabilistic Finite Element Analysis of Structures using the Multiplicative Dimensional Reduction Method; University of Waterloo: Waterloo, ON, Canada, 2015. [Google Scholar]
- Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Inverardi, P.L.N.; Tagliani, A. Maximum Entropy Density Estimation from Fractional Moments. Commun. Stat. Theory Methods 2003, 2, 327–345. [Google Scholar] [CrossRef]
- Zwillinger, C. CRC Standard Mathematical Tables and Formulae, 31st ed.; A CRC Press Company: New York, NY, USA, 2003. [Google Scholar]
- Torchio, M.; Magni, L.; Gopaluni, R.B.; Braatz, R.D.; Raimondo, D.M. LIONSIMBA: A Matlab Framework Based on a Finite Volume Model Suitable for Li-Ion Battery Design, Simulation, and Control. J. Electrochem. Soc. 2016, 163, A1192–A1205. [Google Scholar] [CrossRef]
- Green, J.M.; Hartman, B.; Glowacki, P.F. A System-based View of the Standards and Certification Landscape for Electric Vehicles. World Electr. Veh. J. 2016, 8, 564–575. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, V.; Moretto, P. Standards for the Performance and Durability Assessment of Electric Vehicle Batteries—Possible Performance Criteria for an Ecodesign Regulation; Joint Research Centre: Ispra, Italy, 2018. [Google Scholar]
- Castillo, E.C. Standards for electric vehicle batteries and associated testing procedures. In Advances in Battery Technologies for Electric Vehicles; Woodhead Publishing: Sawston, UK, 2015; pp. 469–494. [Google Scholar]
- Iclodean, C.; Varga, B.; Burnete, N.; Cimerdean, D.; Jurchiș, B. Comparison of Different Battery Types for Electric Vehicles. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 252, p. 012058. [Google Scholar]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Meissner, E.; Richter, G. Battery Monitoring and Electrical Energy Management: Precondition for Future Vehicle Electric Power Systems. J. Power Resour. 2003, 116, 79–98. [Google Scholar] [CrossRef]
- Tran, M.-K.; Mathew, M.; Janhunen, S.; Panchal, S.; Raahemifar, K.; Fraser, R.; Fowler, M. A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters. J. Energy Storage 2021, 43, 103252. [Google Scholar] [CrossRef]
- Tran, M.-K.; Panchal, S.; Chauhan, V.; Brahmbhatt, N.; Mevawalla, A.; Fraser, R.; Fowler, M. Python-based scikit-learn machine learning models for thermal and electrical performance prediction of high-capacity lithium-ion battery. Int. J. Energy Res. 2021, 45, 1–9. [Google Scholar] [CrossRef]
- Saleem, K.; Mehran, K.; Ali, Z. Online reduced complexity parameter estimation technique for equivalent circuit model of lithium-ion battery. Electr. Power Syst. Res. 2020, 185, 106356. [Google Scholar] [CrossRef]
Domain | Governing Equation | Solution Variable |
---|---|---|
Particle | 1D spherical particle model | |
, | ||
Electrode | 1D porous electrode model | |
, | ||
, | ||
, | ||
Cell | 3D Single Potential-Pair Continuum (SPPC) model | |
Gaussian Rules | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|
Gauss–Hermite | ||||||
Input Variable [Unit] | Lower Bound | Upper Bound | Number of Values Picked |
---|---|---|---|
Reference voltage [V] | 3.74 | 3.83 | 51 |
Working temperature [K] | 298 | 324 | 51 |
iSOC [%] | 53 | 88 | 25 |
Simulation timestep | 25 s |
Domain | Parameter | Value | ||
---|---|---|---|---|
Positive electrode | Negative electrode | |||
Particle | Maximum Li capacity, | |||
Radius of particle, | ||||
Solid diffusion coefficient, | ||||
Activation energy solid diffusion | ||||
Positive electrode | Separator | Negative electrode | ||
Electrode | Electrolyte initial concentration, | |||
Thickness, | ||||
Bruggeman factor, | ||||
Volume fraction electrolyte, | ||||
Volume fraction inert, | ||||
Volume fraction active solid phase, | ||||
Specific surface area, | ||||
Solid electronic conductivity, | ||||
Reaction rate constant | ||||
Activation energy for reaction | ||||
The universal gas constant, | ||||
The Faraday constant, | ||||
Electrolyte diffusion coefficient, | ||||
Electrolyte ionic conductivity, | ||||
Effective solid phase conductivity, | ||||
Effective liquid phase diffusion coefficient, | ||||
Effective liquid phase ionic conductivity, | ||||
Effective liquid phase diffusional ionic conductivity, | ||||
transference number, | ||||
Positive electrode | Negative electrode | |||
Cell | Current collector thickness, | |||
Conductivity, | ||||
Volumetric heat capacity, | ||||
Planar thermal conductivity, |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Pelegri, A.A. A Data-Driven Framework to Predict Lithium-Ion Battery Cell Imbalance for Real-Time Battery Management Systems. Energies 2021, 14, 8492. https://doi.org/10.3390/en14248492
Li C, Pelegri AA. A Data-Driven Framework to Predict Lithium-Ion Battery Cell Imbalance for Real-Time Battery Management Systems. Energies. 2021; 14(24):8492. https://doi.org/10.3390/en14248492
Chicago/Turabian StyleLi, Chao, and Assimina A. Pelegri. 2021. "A Data-Driven Framework to Predict Lithium-Ion Battery Cell Imbalance for Real-Time Battery Management Systems" Energies 14, no. 24: 8492. https://doi.org/10.3390/en14248492
APA StyleLi, C., & Pelegri, A. A. (2021). A Data-Driven Framework to Predict Lithium-Ion Battery Cell Imbalance for Real-Time Battery Management Systems. Energies, 14(24), 8492. https://doi.org/10.3390/en14248492